48,723 research outputs found
Nucleon Sigma Term and In-medium Quark Condensate in the Modified Quark-Meson Coupling Model
We evaluate the nucleon sigma term and in-medium quark condensate in the
modified quark-meson coupling model which features a density-dependent bag
constant. We obtain a nucleon sigma term consistent with its empirical value,
which requires a significant reduction of the bag constant in the nuclear
medium similar to those found in the previous works. The resulting in-medium
quark condensate at low densities agrees well with the model independent linear
order result. At higher densities, the magnitude of the in-medium quark
condensate tends to increase, indicating no tendency toward chiral symmetry
restoration.Comment: 9 pages, modified version to be publishe
The X-ray afterglow of GRB 081109A: clue to the wind bubble structure
We present the prompt BAT and afterglow XRT data of Swift-discovered
GRB081109A up to ~ 5\times 10^5 sec after the trigger, and the early
ground-based optical follow-ups. The temporal and spectral indices of the X-ray
afterglow emission change remarkably. We interpret this as the GRB jet first
traversing the freely expanding supersonic stellar wind of the progenitor with
density varying as . Then after approximately 300 sec the
jet traverses into a region of apparent constant density similar to that
expected in the stalled-wind region of a stellar wind bubble or the
interstellar medium (ISM). The optical afterglow data are generally consistent
with such a scenario. Our best numerical model has a wind density parameter
{, a density of the stalled wind ,
and a transition radius cm}. Such a transition
radius is smaller than that predicted by numerical simulations of the stellar
wind bubbles and may be due to a rapidly evolving wind of the progenitor close
to the time of its core-collapse.Comment: 7 pages, 5 figures, 2 tables, MNRAS accepted for publicatio
p-wave Feshbach molecules
We have produced and detected molecules using a p-wave Feshbach resonance
between 40K atoms. We have measured the binding energy and lifetime for these
molecules and we find that the binding energy scales approximately linearly
with magnetic field near the resonance. The lifetime of bound p-wave molecules
is measured to be 1.0 +/- 0.1 ms and 2.3 +/- 0.2 ms for the m_l = +/- 1 and m_l
= 0 angular momentum projections, respectively. At magnetic fields above the
resonance, we detect quasi-bound molecules whose lifetime is set by the
tunneling rate through the centrifugal barrier
Higher-order Continuum Approximation for Rarefied Gases
The Hilbert-Chapman-Enskog expansion of the kinetic equations in mean flight
times is believed to be asymptotic rather than convergent. It is therefore
inadvisable to use lower order results to simplify the current approximation as
is done in the traditional Chapman-Enskog procedure, since that is an iterative
method. By avoiding such recycling of lower order results, one obtains
macroscopic equations that are asymptotically equivalent to the ones found in
the Chapman-Enskog approach. The new equations contain higher order terms that
are discarded in the Chapman-Enskog method. These make a significant impact on
the results for such problems as ultrasound propagation. In this paper, it is
shown that these results turn out well with relatively little complication when
the expansions are carried to second order in the mean free time, for the
example of the relaxation or BGK model of kinetic theory.Comment: 20 pages, 2 figures, RevTeX 4 macro
- …