51,309 research outputs found
Thermodynamics of lattice QCD with 2 flavours of colour-sextet quarks: A model of walking/conformal Technicolor
QCD with two flavours of massless colour-sextet quarks is considered as a
model for conformal/walking Technicolor. If this theory possess an infrared
fixed point, as indicated by 2-loop perturbation theory, it is a
conformal(unparticle) field theory. If, on the other hand, a chiral condensate
forms on the weak-coupling side of this would-be fixed point, the theory
remains confining. The only difference between such a theory and regular QCD is
that there is a range of momentum scales over which the coupling constant runs
very slowly (walks). In this first analysis, we simulate the lattice version of
QCD with two flavours of staggered quarks at finite temperatures on lattices of
temporal extent and 6. The deconfinement and chiral-symmetry
restoration couplings give us a measure of the scales associated with
confinement and chiral-symmetry breaking. We find that, in contrast to what is
seen with fundamental quarks, these transition couplings are very different.
for each of these transitions increases significantly from
and as expected for the finite temperature transitions of an
asymptotically-free theory. This suggests a walking rather than a conformal
behaviour, in contrast to what is observed with Wilson quarks. In contrast to
what is found for fundamental quarks, the deconfined phase exhibits states in
which the Polyakov loop is oriented in the directions of all three cube roots
of unity. At very weak coupling the states with complex Polyakov loops undergo
a transition to a state with a real, negative Polyakov loop.Comment: 21 pages, 9 figures, Revtex with postscript figures. One extra
reference was added; text is unchanged. Corrected typographical erro
Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields
We have studied an anomalous microwave (mw) response of superconducting
YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak
dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s})
show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and
X_{s} were found to initially decrease with elevated H_{dc} and then increase
after H_{dc} reaches a crossover field, H_{c}, which is independent of the
amplitude and frequency of the input mw signal within the measurements. The
frequency dependence of R_{s} is almost linear at fixed H_{dc} with different
magnitudes (H_{c}). The impedance plane analysis
demonstrates that r_{H}, which is defined as the ratio of the change in
R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1
at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is
qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica
Thermodynamics of lattice QCD with 2 sextet quarks on N_t=8 lattices
We continue our lattice simulations of QCD with 2 flavours of colour-sextet
quarks as a model for conformal or walking technicolor. A 2-loop perturbative
calculation of the -function which describes the evolution of this
theory's running coupling constant predicts that it has a second zero at a
finite coupling. This non-trivial zero would be an infrared stable fixed point,
in which case the theory with massless quarks would be a conformal field
theory. However, if the interaction between quarks and antiquarks becomes
strong enough that a chiral condensate forms before this IR fixed point is
reached, the theory is QCD-like with spontaneously broken chiral symmetry and
confinement. However, the presence of the nearby IR fixed point means that
there is a range of couplings for which the running coupling evolves very
slowly, i.e. it 'walks'. We are simulating the lattice version of this theory
with staggered quarks at finite temperature studying the changes in couplings
at the deconfinement and chiral-symmetry restoring transitions as the temporal
extent () of the lattice, measured in lattice units, is increased. Our
earlier results on lattices with show both transitions move to weaker
couplings as increases consistent with walking behaviour. In this paper
we extend these calculations to . Although both transition again move to
weaker couplings the change in the coupling at the chiral transition from
to is appreciably smaller than that from to .
This indicates that at we are seeing strong coupling effects and that
we will need results from to determine if the chiral-transition
coupling approaches zero as , as needed for the theory
to walk.Comment: 21 pages Latex(Revtex4) source with 4 postscript figures. v2: added 1
reference. V3: version accepted for publication, section 3 restructured and
interpretation clarified. Section 4 future plans for zero temperature
simulations clarifie
Bulk Superconductivity at 14 K in Single Crystals of Fe1+yTexSe1-x
Resistivity, magnetic susceptibility and heat capacity measurements are
reported for single crystals of Fe1+yTexSe1-x grown via a modified Bridgeman
method with 0 < y < 0.15, and x= 1, 0.9, 0.75, 0. 67, 0.55 and 0.5. Although
resistivity measurements show traces of superconductivity near 14 K for all x
except x=1, only crystals grown with compositions near x=0.5 exhibit bulk
superconductivity. The appearance of bulk superconductivity correlates with a
reduction in the magnitude of the magnetic susceptibility at room temperature
and smaller values of y, the concentration of Fe in the Fe(2) site.Comment: Submitted to Phys. Rev.
HST and LAMOST discover a dual active galactic nucleus in J0038+4128
We report the discovery of a kiloparsec-scale dual active galactic nucleus
(AGN) in J0038+4128. From the Hubble Space Telescope (HST) Wide Field Planetary
Camera (WFPC2) images, we find two optical nuclei with a projection separation
of 4.7 kpc (3.44 arcsec). The southern component (J0038+4128S) is
spectroscopically observed with the HST Goddard High Resolution Spectrograph in
the UV range and is found to be a Seyfert 1 galaxy with a broad Ly alpha
emission line. The northern component (J0038+4128N) is spectroscopically
observed during the Large Sky Area Multi-Object Fibre Spectroscopic Telescope
(also named the Guoshoujing Telescope) pilot survey in the optical range. The
observed line ratios as well as the consistency of redshift of the nucleus
emission lines and the host galaxy's absorption lines indicate that J0038+4128N
is a Seyfert 2 galaxy with narrow lines only. These results thus confirm that
J0038+4128 is a Seyfert 1-Seyfert 2 AGN pair. The HST WFPC2 F336W/U-band image
of J0038+4128 also reveals for the first time for a dual AGN system two pairs
of bi-symmetric arms, as are expected from the numerical simulations of such
system. Being one of a few confirmed kiloparsec-scale dual AGNs exhibiting a
clear morphological structure of the host galaxies, J0038+4128 provides an
unique opportunity to study the co-evolution of the host galaxies and their
central supermassive black holes undergoing a merging process.Comment: 6 pages, 4 figures, 2 tables, Accepted for publication in MNRAS
Letter
Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K
A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using
high-pressure and high-temperature synthesis. A Rietveld refinement based on
powder x-ray diffraction confirms that the superconductors crystallize in the
K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but
with partially occupied apical oxygen sites. It is found that the
superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y
superconductor with constant carrier doping level, i.e., constant d, is
controlled not only by order/disorder of apical-O atoms but also by Ba content.
Tcmax =98 K is achieved in the material with x=0.6 that reaches the record
value of Tc among the single-layer copper oxide superconductors, and is higher
than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is
Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The
result indicates that another effect surpasses the disorder effect that is
related either to the increased in-plane Cu-O bond length or to elongated
apical-O distance due to Ba substitution with larger cation size. The present
experiment demonstrates that the optimization of local geometry out of the Cu-O
plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure
A Fractional Fokker-Planck Model for Anomalous Diffusion
In this paper we present a study of anomalous diffusion using a Fokker-Planck
description with fractional velocity derivatives. The distribution functions
are found using numerical means for varying degree of fractionality observing
the transition from a Gaussian distribution to a L\'evy distribution. The
statistical properties of the distribution functions are assessed by a
generalized expectation measure and entropy in terms of Tsallis statistical
mechanics. We find that the ratio of the generalized entropy and expectation is
increasing with decreasing fractionality towards the well known so-called
sub-diffusive domain, indicating a self-organising behavior.Comment: 22 pages, 14 figure
A tunable radiation source by coupling laser-plasma-generated electrons to a periodic structure
Near-infrared radiation around 1000 nm generated from the interaction of a high-density MeV electron beam, obtained by impinging an intense ultrashort laser pulse on a solid target, with a metal grating is observed experimentally. Theoretical modeling and particle-in-cell simulation suggest that the radiation is caused by the Smith-Purcell mechanism. The results here indicate that tunable terahertz radiation with tens GV=m field strength can be achieved by using appropriate grating parameter
- …
