5 research outputs found

    Laxative effects of partially defatted flaxseed meal on normal and experimental constipated mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Constipation is a very common health problem in the world. Intake of sufficient amount of dietary fibers is a cornerstone in the prevention and treatment of constipation. As a traditional medicine, flaxseed has been used to treat constipation for centuries, but the controlled trials are rare. The purpose of the present study was to assess that whether partially defatted flaxseed meal (PDFM) has the potential role to facilitate fecal output in normal and experimental constipated mice.</p> <p>Methods</p> <p>After supplemented with 2.5%, 5% and 10% (w/w) PDFM (L-, M- and H -PDFM) for 14 days, the constipation models of mice were induced by atropine-diphenoxylate. The small intestinal transit rates, start time of defecation, amount of defecation and wet weight of feces were researched in normal and constipation model mice.</p> <p>Results</p> <p>M- and H-PDFM significantly increase small intestinal transit rates in constipation model mice. All dose of PDFM markedly shortened the start time of defecation and M- and H-PDFM significantly increase stool frequency and weight in both normal and constipation model mice.</p> <p>Conclusions</p> <p>PDFM may be a useful laxative to facilitate fecal output in normal and constipation conditions.</p

    Research on Wuyi County Road Traffic Leading Rural Revitalization Practice Based on Life Quality Evaluation Index

    No full text
    In order to study the influence and development of transportation on rural revitalization in suburban counties in southern China, Xinzhai Town, Wuyi County, Zhejiang Province, was selected as the research object, and field interviews and data collection were used to analyze the practical impact and significance of road traffic development on rural revitalization

    A strategy for designing voriconazole dosage regimens to prevent invasive pulmonary aspergillosis based on a cellular pharmacokinetics/pharmacodynamics model

    No full text
    Abstract Background Invasive pulmonary aspergillosis (IPA) is a life-threatening disease in immunosuppressed patients. Voriconazole is commonly used to prevent and treat IPA in the clinic, but the optimal prophylactic antifungal regimen is unknown. The objective of this study was to clarify the mechanism underlying how voriconazole prevents IPA based on a target cellular pharmacokinetics/pharmacodynamics model, with the aim of identifying a way to design an optimal prophylactic antifungal regimen. Methods A nystatin assay was used to establish a target-cells model for A. fumigatus infection. An inhibitory effect sigmoid Emax model was developed to explore the cellular PK/PD breakpoint, and Monte Carlo simulation was used to design the prophylactic antifungal regimen. Results The intracellular activity of voriconazole in the target cells varied with its concentration, with the minimum inhibitory concentration (MIC) being an important determinant. For A. fumigatus strains AF293 and AF26, voriconazole decreased the intracellular inoculum by 0.79 and 0.84Ā lg cfu, respectively. The inhibitory effect sigmoid Emax model showed that 84.01% of the intracellular inoculum was suppressed by voriconazole within 24Ā h, and that a PK/PD value of 35.53 for the extracellular voriconazole concentration divided by MIC was associated with a 50% suppression of intracellular A. fumigatus. The Monte Carlo simulation results showed that the oral administration of at least 200Ā mg of voriconazole twice daily was yielded estimated the cumulative fraction of response value of 91.48%. Concentration of voriconazole in the pulmonary epithelial lining fluid and the plasma of >ā€‰17.77 and >ā€‰1.55Ā mg/L, respectively, would ensure the PK/PDā€‰>ā€‰35.53 for voriconazole against most isolates of A. fumigatus and may will be benefit to prevent IPA in clinical applications. Conclusions This study used a target cellular pharmacokinetics/pharmacodynamics model to reveal a potential mechanism underlying how voriconazole prevents IPA and has provided a method for designing voriconazole prophylactic antifungal regimen in immunosuppressed patients
    corecore