32 research outputs found

    Learning to Infer User Hidden States for Online Sequential Advertising

    Get PDF
    To drive purchase in online advertising, it is of the advertiser's great interest to optimize the sequential advertising strategy whose performance and interpretability are both important. The lack of interpretability in existing deep reinforcement learning methods makes it not easy to understand, diagnose and further optimize the strategy. In this paper, we propose our Deep Intents Sequential Advertising (DISA) method to address these issues. The key part of interpretability is to understand a consumer's purchase intent which is, however, unobservable (called hidden states). In this paper, we model this intention as a latent variable and formulate the problem as a Partially Observable Markov Decision Process (POMDP) where the underlying intents are inferred based on the observable behaviors. Large-scale industrial offline and online experiments demonstrate our method's superior performance over several baselines. The inferred hidden states are analyzed, and the results prove the rationality of our inference.Comment: to be published in CIKM 202

    CMTM6 shapes antitumor T cell response through modulating protein expression of CD58 and PD-L1

    Get PDF
    The dysregulated expression of immune checkpoint molecules enables cancer cells to evade immune destruction. While blockade of inhibitory immune checkpoints like PD-L1 forms the basis of current cancer immunotherapies, a deficiency in costimulatory signals can render these therapies futile. CD58, a costimulatory ligand, plays a crucial role in antitumor immune responses, but the mechanisms controlling its expression remain unclear. Using two systematic approaches, we reveal that CMTM6 positively regulates CD58 expression. Notably, CMTM6 interacts with both CD58 and PD-L1, maintaining the expression of these two immune checkpoint ligands with opposing functions. Functionally, the presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and response to PD-L1-PD-1 blockade. Collectively, these findings provide fundamental insights into CD58 regulation, uncover a shared regulator of stimulatory and inhibitory immune checkpoints, and highlight the importance of tumor-intrinsic CMTM6 and CD58 expression in antitumor immune responses

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Aerodynamic Force and Aeroelastic Response Characteristics Analyses for the Galloping of Ice-Covered Four-Split Transmission Lines in Oblique Flows

    No full text
    In order to study the galloping mechanism of ice-covered four-split transmission lines in oblique flows, the aerodynamic forces and aero-elastic response characteristics of the crescent-shaped four-split ice-covered transmission lines are investigated through wind tunnel tests on rigid and aero-elastic models. According to Den Hartog and Nigel’s galloping theories, the damping coefficients are calculated based on the experimental data. The results show that the crescent-shaped ice-covered four-split transmission lines usually suffer from torsional galloping. Furthermore, based on the aero-elastic wind tunnel data, the galloping is characterized by an elliptical trajectory, negative damping ratio, and a negative strain at hanging position. In addition, the galloping appears to be more prone to occur under oblique flows, with a larger galloping amplitude and a lower critical wind speed. This might be because an out-of-plane vibration of the third-order mode is excited at a lower wind speed, leading to a coupled resonance between in-plane and out-of-plane vibrations at the third-order mode with a frequency ratio of 1:1. The experimental results in this paper can also be used to verify the fluid-structure interaction simulation method of ice-covered transmission lines

    Experimental study on the galloping characteristics of single ice-coated transmission lines under oblique flows

    No full text
    Abstract Galloping of ice-coated transmission lines is occasionally observed under oblique wind directions. However, most current investigations on the galloping mechanisms are for flow perpendicular to the span of the transmission lines. In order to address this gap, this research studies the galloping characteristics of ice-coated transmission lines under oblique flows based on wind tunnel tests. The wind-induced displacement of an aero-elastic iced-coated transmission line model was measured with a noncontact displacement measurement equipment in a wind tunnel at different wind speeds and directions. The results show that galloping is characterized by elliptical trajectories and negative damping, which is more likely to occur under oblique flows than the direct flow (0°). At 15° wind direction, a galloping in vertical direction was observed at wind speeds above 5 m/s. At 30° wind direction, galloping was observed over the entire range of the tested wind speeds. Moreover, the galloping amplitudes under oblique flows are observed to be larger than that at the direct flows. Consequently, when the wind direction between the major winter monsoon azimuth and the lateral direction of transmission line route is between 15° and 30°, appropriate anti-galloping devices are highly recommended in practice

    Effectiveness of oncology nurse navigator on the incidence of postoperative pulmonary complications in gastric cancer patients undergoing radical gastrectomy

    No full text
    Abstract Background Management of postoperative pulmonary complications (PPCs) can be challenging in gastric cancer patients undergoing radical gastrectomy and is always associated with poor prognosis. Even though oncology nurse navigator (ONN) provide effective and critical individualized care to patients, little is known about their impact on the occurrence of PPCs in gastric cancer patients. This study aimed to determine whether ONN decreases the incidence of PPCs in gastric cancer patients. Methods This was a retrospective review in which data for gastric cancer patients at one centre was evaluated before and after an ONN hired. An ONN was introduced to patients at their initial visit to manage pulmonary complications throughout treatment. The research was conducted from 1 August 2020 to 31 January 2022. The study participants were divided into the non-ONN group (from 1 August 2020 to 31 January 2021) and the ONN group (from 1 August 2021 to 31 January 2022). The incidence and severity of PPCs between the groups were then compared. Results ONN significantly decreased the incidence of PPCs (15.0% vs. 9.8%) (OR = 2.532(95% CI: 1.087–3.378, P = 0.045)), but there was no significant difference in the components of PPCs including pleural effusion, atelectasis, respiratory infection, and pneumothorax. The severity of PPCs was also significantly higher in the non-ONN group (p = 0.020). No significant statistical difference was observed for the major pulmonary complications (grade ≥ 3) between the two groups (p = 0.286). Conclusions Role of ONN significantly decrease the incidence of PPCs in gastric cancer patients undergoing radical gastrectomy

    c-di-GMP Regulates Various Phenotypes and Insecticidal Activity of Gram-Positive Bacillus thuringiensis

    No full text
    C-di-GMP has been well investigated to play significant roles in the physiology of many Gram-negative bacteria. However, its effect on Gram-positive bacteria is less known. In order to more understand the c-di-GMP functions in Gram-positive bacteria, we have carried out a detailed study on the c-di-GMP-metabolizing enzymes and their physiological functions in Bacillus thuringiensis, a Gram-positive entomopathogenic bacterium that has been applied as an insecticide successfully. We performed a systematic study on the ten putative c-di-GMP-synthesizing enzyme diguanylate cyclases (DGCs) and c-di-GMP-degrading enzyme phosphodiesterases (PDEs) in B. thuringiensis BMB171, and artificially elevated the intracellular c-di-GMP level in BMB171 by deleting one or more pde genes. We found increasing level of intracellular c-di-GMP exhibits similar activities as those in Gram-negative bacteria, including altered activities in cell motility, biofilm formation, and cell-cell aggregation. Unexpectedly, we additionally found a novel function exhibited by the increasing level of c-di-GMP to promote the insecticidal activity of this bacterium against Helicoverpa armigera. Through whole-genome transcriptome profile analyses, we found that 4.3% of the B. thuringiensis genes were differentially transcribed when c-di-GMP level was increased, and 77.3% of such gene products are involved in some regulatory pathways not reported in other bacteria to date. In summary, our study represents the first comprehensive report on the c-di-GMP-metabolizing enzymes, their effects on phenotypes, and the transcriptome mediated by c-di-GMP in an important Gram-positive bacterium

    In-situ construction of hybrid artificial SEI with fluorinated siloxane to enable dendrite-free Li metal anodes

    No full text
    Lithium (Li) metal anode holds great promise for high-energy-density rechargeable batteries. However, it suffers from the Li dendrites growth and uncontrollable side reactions with electrolyte due to the unstable solid electrolyte interphase (SEI) layer. Herein, we propose a facile strategy for the in-situ fabricate of organic-inorganic composite artificial SEI layers on Li surfaces, which consist of organic fluorinated siloxane and inorganic LiF-rich phases. The hybrid artificial SEI endows high mechanical strength (13.1 GPa) and Li+ transfer number (0.62). Such robust SEI protective layers can not only guide uniform nucleation and deposition of Li metal by facilitating uniform Li-ion distribution, but also prevent unfavourable side reactions. Accordingly, the protected metallic lithium anode (PMTFPS-Li) anode enables stable Li plating/stripping performance in symmetric cells for more than 300 h at 4 mA ·h/cm2 under a high areal capacity of 4 mA/cm2. Moreover, the PMTFPS-Li/S cells could maintain more than 300 stable cycles at 0.5C and the PMTFPS-Li/LFP cells present excellent cycling performance (400 cycles at 1C) and enhanced rate capability (110.4 mA·h/g at 3 C). This work will inspire the design of artificial SEI on Li anodes for advanced Li metal batteries
    corecore