174 research outputs found

    Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator

    Full text link
    We demonstrate a two-crystal mid-infrared dual-wavelength optical parametric oscillator, synchronously pumped by a high power femtosecond Yb:fiber laser. The singly-resonant ring cavity, containing two periodically poled lithium niobate crystals, is capable of generating two synchronized idler wavelengths, independently tunable over 30 THz in the 2.9 - 4.2 {\mu}m wavelength region, due to the cascaded quadratic nonlinear effect. The independent tunability of the two idlers makes the optical parametric oscillator a promising source for ultrafast pulse generation towards the THz wavelength region, based on different frequency generation. In addition, the observed frequency doubled idler within the crystal indicates the possibility to realize a broadband optical self-phase locking between pump, signal, idler and higher order generated parametric lights

    Effects of Government R&D Grants on IT Entrepreneurial Firm Performance: A New Perspective on Exploration vs. Exploitation

    Get PDF
    Governments keep subsidizing R&D of IT entrepreneurial firms greatly. However, the effect of these grants remains unclear. Acknowledging this gap, this study provides a nuanced perspective to understand the influence of government R&D grants on IT entrepreneurial firm performance. Based on the literature on organizational learning, we categorize government R&D grants into two types: explorative vs. exploitative. Moreover, drawing on resource complementarity theory, we articulate how the two types of government R&D grants interact with firms’ private R&D resources. In particular, we hypothesize that in the innovation stage, government explorative R&D grants complement a firm’s internal exploration in influencing innovation performance, but substitute a firm’s external exploration. We further posit that in the commercialization stage, government exploitative R&D grants complement a firm’s innovation performance and internal exploitation in impacting financial performance, but substitute a firm’s external exploitation. We advance a theory of public-private R&D interaction for IT entrepreneurial firms

    Automated Static Warning Identification via Path-based Semantic Representation

    Full text link
    Despite their ability to aid developers in detecting potential defects early in the software development life cycle, static analysis tools often suffer from precision issues (i.e., high false positive rates of reported alarms). To improve the availability of these tools, many automated warning identification techniques have been proposed to assist developers in classifying false positive alarms. However, existing approaches mainly focus on using hand-engineered features or statement-level abstract syntax tree token sequences to represent the defective code, failing to capture semantics from the reported alarms. To overcome the limitations of traditional approaches, this paper employs deep neural networks' powerful feature extraction and representation abilities to generate code semantics from control flow graph paths for warning identification. The control flow graph abstractly represents the execution process of a given program. Thus, the generated path sequences of the control flow graph can guide the deep neural networks to learn semantic information about the potential defect more accurately. In this paper, we fine-tune the pre-trained language model to encode the path sequences and capture the semantic representations for model building. Finally, this paper conducts extensive experiments on eight open-source projects to verify the effectiveness of the proposed approach by comparing it with the state-of-the-art baselines.Comment: 17 pages, in Chinese language, 9 figure

    A novel approach for bilevel programs based on Wolfe duality

    Full text link
    This paper considers a bilevel program, which has many applications in practice. To develop effective numerical algorithms, it is generally necessary to transform the bilevel program into a single-level optimization problem. The most popular approach is to replace the lower-level program by its KKT conditions and then the bilevel program can be reformulated as a mathematical program with equilibrium constraints (MPEC for short). However, since the MPEC does not satisfy the Mangasarian-Fromovitz constraint qualification at any feasible point, the well-developed nonlinear programming theory cannot be applied to MPECs directly. In this paper, we apply the Wolfe duality to show that, under very mild conditions, the bilevel program is equivalent to a new single-level reformulation (WDP for short) in the globally and locally optimal sense. We give an example to show that, unlike the MPEC reformulation, WDP may satisfy the Mangasarian-Fromovitz constraint qualification at its feasible points. We give some properties of the WDP reformulation and the relations between the WDP and MPEC reformulations. We further propose a relaxation method for solving WDP and investigate its limiting behavior. Comprehensive numerical experiments indicate that, although solving WDP directly does not perform very well in our tests, the relaxation method based on the WDP reformulation is quite efficient

    SAGA: Summarization-Guided Assert Statement Generation

    Full text link
    Generating meaningful assert statements is one of the key challenges in automated test case generation, which requires understanding the intended functionality of the tested code. Recently, deep learning-based models have shown promise in improving the performance of assert statement generation. However, existing models only rely on the test prefixes along with their corresponding focal methods, yet ignore the developer-written summarization. Based on our observations, the summarization contents usually express the intended program behavior or contain parameters that will appear directly in the assert statement. Such information will help existing models address their current inability to accurately predict assert statements. This paper presents a novel summarization-guided approach for automatically generating assert statements. To derive generic representations for natural language (i.e., summarization) and programming language (i.e., test prefixes and focal methods), we leverage a pre-trained language model as the reference architecture and fine-tune it on the task of assert statement generation. To the best of our knowledge, the proposed approach makes the first attempt to leverage the summarization of focal methods as the guidance for making the generated assert statements more accurate. We demonstrate the effectiveness of our approach on two real-world datasets when compared with state-of-the-art models.Comment: Preprint, to appear in the Journal of Computer Science and Technology (JCST

    Wireless Ad Hoc Federated Learning: A Fully Distributed Cooperative Machine Learning

    Full text link
    Privacy-sensitive data is stored in autonomous vehicles, smart devices, or sensor nodes that can move around with making opportunistic contact with each other. Federation among such nodes was mainly discussed in the context of federated learning with a centralized mechanism in many works. However, because of multi-vendor issues, those nodes do not want to rely on a specific server operated by a third party for this purpose. In this paper, we propose a wireless ad hoc federated learning (WAFL) -- a fully distributed cooperative machine learning organized by the nodes physically nearby. WAFL can develop generalized models from Non-IID datasets stored in distributed nodes locally by exchanging and aggregating them with each other over opportunistic node-to-node contacts. In our benchmark-based evaluation with various opportunistic networks, WAFL has achieved higher accuracy of 94.8-96.3% than the self-training case of 84.7%. All our evaluation results show that WAFL can train and converge the model parameters from highly-partitioned Non-IID datasets over opportunistic networks without any centralized mechanisms.Comment: 14 pages, 8 figures, 2 table

    MB-TaylorFormer: Multi-branch Efficient Transformer Expanded by Taylor Formula for Image Dehazing

    Full text link
    In recent years, Transformer networks are beginning to replace pure convolutional neural networks (CNNs) in the field of computer vision due to their global receptive field and adaptability to input. However, the quadratic computational complexity of softmax-attention limits the wide application in image dehazing task, especially for high-resolution images. To address this issue, we propose a new Transformer variant, which applies the Taylor expansion to approximate the softmax-attention and achieves linear computational complexity. A multi-scale attention refinement module is proposed as a complement to correct the error of the Taylor expansion. Furthermore, we introduce a multi-branch architecture with multi-scale patch embedding to the proposed Transformer, which embeds features by overlapping deformable convolution of different scales. The design of multi-scale patch embedding is based on three key ideas: 1) various sizes of the receptive field; 2) multi-level semantic information; 3) flexible shapes of the receptive field. Our model, named Multi-branch Transformer expanded by Taylor formula (MB-TaylorFormer), can embed coarse to fine features more flexibly at the patch embedding stage and capture long-distance pixel interactions with limited computational cost. Experimental results on several dehazing benchmarks show that MB-TaylorFormer achieves state-of-the-art (SOTA) performance with a light computational burden. The source code and pre-trained models are available at https://github.com/FVL2020/ICCV-2023-MB-TaylorFormer.Comment: ICCV 202
    • …
    corecore