2,333 research outputs found

    Combination of Multiple Bipartite Ranking for Web Content Quality Evaluation

    Full text link
    Web content quality estimation is crucial to various web content processing applications. Our previous work applied Bagging + C4.5 to achive the best results on the ECML/PKDD Discovery Challenge 2010, which is the comibination of many point-wise rankinig models. In this paper, we combine multiple pair-wise bipartite ranking learner to solve the multi-partite ranking problems for the web quality estimation. In encoding stage, we present the ternary encoding and the binary coding extending each rank value to L−1L - 1 (L is the number of the different ranking value). For the decoding, we discuss the combination of multiple ranking results from multiple bipartite ranking models with the predefined weighting and the adaptive weighting. The experiments on ECML/PKDD 2010 Discovery Challenge datasets show that \textit{binary coding} + \textit{predefined weighting} yields the highest performance in all four combinations and furthermore it is better than the best results reported in ECML/PKDD 2010 Discovery Challenge competition.Comment: 17 pages, 8 figures, 2 table

    Context Does Matter: End-to-end Panoptic Narrative Grounding with Deformable Attention Refined Matching Network

    Full text link
    Panoramic Narrative Grounding (PNG) is an emerging visual grounding task that aims to segment visual objects in images based on dense narrative captions. The current state-of-the-art methods first refine the representation of phrase by aggregating the most similar kk image pixels, and then match the refined text representations with the pixels of the image feature map to generate segmentation results. However, simply aggregating sampled image features ignores the contextual information, which can lead to phrase-to-pixel mis-match. In this paper, we propose a novel learning framework called Deformable Attention Refined Matching Network (DRMN), whose main idea is to bring deformable attention in the iterative process of feature learning to incorporate essential context information of different scales of pixels. DRMN iteratively re-encodes pixels with the deformable attention network after updating the feature representation of the top-kk most similar pixels. As such, DRMN can lead to accurate yet discriminative pixel representations, purify the top-kk most similar pixels, and consequently alleviate the phrase-to-pixel mis-match substantially.Experimental results show that our novel design significantly improves the matching results between text phrases and image pixels. Concretely, DRMN achieves new state-of-the-art performance on the PNG benchmark with an average recall improvement 3.5%. The codes are available in: https://github.com/JaMesLiMers/DRMN.Comment: Accepted by ICDM 202

    AMatFormer: Efficient Feature Matching via Anchor Matching Transformer

    Full text link
    Learning based feature matching methods have been commonly studied in recent years. The core issue for learning feature matching is to how to learn (1) discriminative representations for feature points (or regions) within each intra-image and (2) consensus representations for feature points across inter-images. Recently, self- and cross-attention models have been exploited to address this issue. However, in many scenes, features are coming with large-scale, redundant and outliers contaminated. Previous self-/cross-attention models generally conduct message passing on all primal features which thus lead to redundant learning and high computational cost. To mitigate limitations, inspired by recent seed matching methods, in this paper, we propose a novel efficient Anchor Matching Transformer (AMatFormer) for the feature matching problem. AMatFormer has two main aspects: First, it mainly conducts self-/cross-attention on some anchor features and leverages these anchor features as message bottleneck to learn the representations for all primal features. Thus, it can be implemented efficiently and compactly. Second, AMatFormer adopts a shared FFN module to further embed the features of two images into the common domain and thus learn the consensus feature representations for the matching problem. Experiments on several benchmarks demonstrate the effectiveness and efficiency of the proposed AMatFormer matching approach.Comment: Accepted by IEEE Transactions on Multimedia (TMM) 202
    • …
    corecore