3,003 research outputs found

    Zero-noise Extrapolation Assisted with Purity for Quantum Error Mitigation

    Full text link
    Quantum error mitigation is a technique used to post-process errors occurring in the quantum system, which reduces the expected errors and achieves higher accuracy. One method of quantum error mitigation is zero-noise extrapolation, which involves amplifying the noise and then extrapolating the observable expectation of interest back to a noise-free point. This method usually relies on the error model of the noise, as error rates for different levels of noise are assumed during the noise amplification process. In this paper, we propose that the purity of output states in noisy circuits can assist in the extrapolation process, eliminating the need for assumptions about error rates. We also introduce the quasi-polynomial model from the linearity of quantum channel for extrapolation of experimental data, which can be reduced to other proposed models. Furthermore, we verify our purity-assisted zero-noise extrapolation by performing numerical simulations and experiments on the online public quantum computation platform, Quafu, to compare it with the routine zero-noise extrapolation and virtual distillation methods. Our results demonstrate that this modified method can suppress the random fluctuation of operator expectation measurement, and effectively reduces the bias in extrapolation to a level lower than both the zero-noise extrapolation and virtual distillation methods, especially when the error rate is moderate

    Brusatol

    Get PDF
    The title compound, C26H32O11, is composed of an α,β-unsaturated cyclo­hexa­none ring (A), two cyclo­hexane rings (B and C), a six-membered lactone ring (D) and tetra­hydro­furan ring (E). Ring A exists in a half-chair conformation with a C atom displaced by 0.679 (2) Å from the mean plane through the remaining five atoms. Ring B exists in a normal chair conformation. Both rings C and D exist in a twisted-chair conformation due to the O-atom bridge and the carbonyl group in rings C and D, respectively. Ring E shows an envelope conformation with a C atom displaced by 0.761 (1) Å from the mean plane through the remaining five atoms. The ring junctions are A/B trans, B/C trans, C/D cis and D/E cis. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, O—H⋯O hydrogen bonds involving the hy­droxy, lactone and ester groups and C—H⋯O inter­actions are observed

    Secohellebrigeninamide

    Get PDF
    The title compound, C26H37NO5, was the reaction product of hellebrigenin with N,N-dimethyl­formamide. It consists of three cyclo­hexane rings (A, B and C), one five-membered ring (D) and one dihydro­pyran ring (E). The stereochemistry of the ring junctions is is A/B cis, B/C trans, C/D cis and C/E trans. The cyclo­hexane rings A, B and C have chair conformations. Both the five-membered ring D and the dihydro­pyran ring adopt an envelope conformation. Two orientations are found for the aldehyde group with occupancies of 0.608 (10) and 0.392 (10). In the crystal, short O—H⋯O hydrogen bonds and short C—H⋯O contacts involving the hy­droxy group, terminal methyl group and carbonyl group link the mol­ecules into a three-dimensional network

    Data query mechanism based on hash computing power of blockchain in internet of things

    Get PDF
    Funding: This work is supported by the NSFC (61772280, 61772454, 61811530332, 61811540410), the PAPD fund from NUIST. This work was funded by the Researchers Supporting Project No. (RSP-2019/102) King Saud University, Riyadh, Saudi Arabia. Jin Wang and Osama Alfarraj are the corresponding authors. Acknowledgments: We thank Researchers Supporting Project No. (RSP-2019/102) King Saud University, Riyadh, Saudi Arabia for funding this paper. Author Contributions: Y.R., F.Z. and O.A. conceived the mechanism design and wrote the paper, P.K.S. built the models. T.W. and A.T. developed the mechanism, J.W. and O.A. revised the manuscript. All authors have read and agreed to the published version of the manuscript.Peer reviewedPublisher PD

    Poly[[tetra­aqua-μ4-fumarato-di-μ3-fumarato-dineodymium(III)] trihydrate]

    Get PDF
    The title coordination polymer, {[Nd2(C4H2O4)3(H2O)4]·3H2O}, was synthesized by the reaction of neodymium(III) nitrate hexa­hydrate with fumaric acid in a water–methanol (7:3) solution. The asymmetric unit comprises two Nd3+ cations, three fumarate dianions (L 2−), four aqua ligands and three uncoordinated water mol­ecules. The carboxyl­ate groups of the fumarate dianions exhibit different coordination modes. In one fumarate dianion, two carboxyl­ate groups chelate two Nd3+ cations, while one of the O atoms is coordinated to another Nd3+ cation. Another fumarate dianion bridges three Nd3+ cations: one of the carboxyl­ate groups chelates one Nd3+ cation, while the other carboxyl­ate group bridges two Nd3+ cations in a monodentate mode. The third fumarate dianion bridges four Nd3+ cations, where one of the carboxyl­ate groups chelates one Nd3+ cation and coordinates in a monodentate mode to a second Nd3+, while the second carboxyl­ate groups bridges two Nd3+ cations in a monodentate mode and one O atom is coordinated to one Nd3+ cation. The Nd3+ cations are in a distorted tricapped–trigonal prismatic environment and coordinated by seven O atoms from the fumarate ligands and two O atoms from water mol­ecules. The Nd3+ cations are linked by two carboxyl­ate O atoms and two carboxyl­ate groups, generating infinite Nd–O chains to form a three-dimensional framework. There are O—H⋯O and C—H⋯O hydrogen-bonding interactions between the coordin­ated and uncoordinated water mol­ecules and carboxyl­ate O atoms
    corecore