32 research outputs found

    Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs

    Full text link
    The great learning ability of deep learning models facilitates us to comprehend the real physical world, making learning to simulate complicated particle systems a promising endeavour. However, the complex laws of the physical world pose significant challenges to the learning based simulations, such as the varying spatial dependencies between interacting particles and varying temporal dependencies between particle system states in different time stamps, which dominate particles' interacting behaviour and the physical systems' evolution patterns. Existing learning based simulation methods fail to fully account for the complexities, making them unable to yield satisfactory simulations. To better comprehend the complex physical laws, this paper proposes a novel learning based simulation model- Graph Networks with Spatial-Temporal neural Ordinary Equations (GNSTODE)- that characterizes the varying spatial and temporal dependencies in particle systems using a united end-to-end framework. Through training with real-world particle-particle interaction observations, GNSTODE is able to simulate any possible particle systems with high precisions. We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb, with varying levels of spatial and temporal dependencies. The results show that the proposed GNSTODE yields significantly better simulations than state-of-the-art learning based simulation methods, which proves that GNSTODE can serve as an effective solution to particle simulations in real-world application.Comment: 12 pages,5 figures, 6 tables, 49 reference

    Multi-modal Multi-kernel Graph Learning for Autism Prediction and Biomarker Discovery

    Full text link
    Due to its complexity, graph learning-based multi-modal integration and classification is one of the most challenging obstacles for disease prediction. To effectively offset the negative impact between modalities in the process of multi-modal integration and extract heterogeneous information from graphs, we propose a novel method called MMKGL (Multi-modal Multi-Kernel Graph Learning). For the problem of negative impact between modalities, we propose a multi-modal graph embedding module to construct a multi-modal graph. Different from conventional methods that manually construct static graphs for all modalities, each modality generates a separate graph by adaptive learning, where a function graph and a supervision graph are introduced for optimization during the multi-graph fusion embedding process. We then propose a multi-kernel graph learning module to extract heterogeneous information from the multi-modal graph. The information in the multi-modal graph at different levels is aggregated by convolutional kernels with different receptive field sizes, followed by generating a cross-kernel discovery tensor for disease prediction. Our method is evaluated on the benchmark Autism Brain Imaging Data Exchange (ABIDE) dataset and outperforms the state-of-the-art methods. In addition, discriminative brain regions associated with autism are identified by our model, providing guidance for the study of autism pathology

    Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs

    Full text link
    Multivariate time series forecasting has long received significant attention in real-world applications, such as energy consumption and traffic prediction. While recent methods demonstrate good forecasting abilities, they have three fundamental limitations. (i) Discrete neural architectures: Interlacing individually parameterized spatial and temporal blocks to encode rich underlying patterns leads to discontinuous latent state trajectories and higher forecasting numerical errors. (ii) High complexity: Discrete approaches complicate models with dedicated designs and redundant parameters, leading to higher computational and memory overheads. (iii) Reliance on graph priors: Relying on predefined static graph structures limits their effectiveness and practicability in real-world applications. In this paper, we address all the above limitations by proposing a continuous model to forecast M\textbf{M}ultivariate T\textbf{T}ime series with dynamic G\textbf{G}raph neural O\textbf{O}rdinary D\textbf{D}ifferential E\textbf{E}quations (MTGODE\texttt{MTGODE}). Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures. Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing, allowing deeper graph propagation and fine-grained temporal information aggregation to characterize stable and precise latent spatial-temporal dynamics. Our experiments demonstrate the superiorities of MTGODE\texttt{MTGODE} from various perspectives on five time series benchmark datasets.Comment: 14 pages, 6 figures, 5 table

    A Survey on Fairness-aware Recommender Systems

    Full text link
    As information filtering services, recommender systems have extremely enriched our daily life by providing personalized suggestions and facilitating people in decision-making, which makes them vital and indispensable to human society in the information era. However, as people become more dependent on them, recent studies show that recommender systems potentially own unintentional impacts on society and individuals because of their unfairness (e.g., gender discrimination in job recommendations). To develop trustworthy services, it is crucial to devise fairness-aware recommender systems that can mitigate these bias issues. In this survey, we summarise existing methodologies and practices of fairness in recommender systems. Firstly, we present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems. Next, after introducing datasets and evaluation metrics applied to assess the fairness of recommender systems, we will delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications. Subsequently, we highlight the connection between fairness and other principles of trustworthy recommender systems, aiming to consider trustworthiness principles holistically while advocating for fairness. Finally, we summarize this review, spotlighting promising opportunities in comprehending concepts, frameworks, the balance between accuracy and fairness, and the ties with trustworthiness, with the ultimate goal of fostering the development of fairness-aware recommender systems.Comment: 27 pages, 9 figure

    Graph Neural Networks for Graphs with Heterophily: A Survey

    Full text link
    Recent years have witnessed fast developments of graph neural networks (GNNs) that have benefited myriads of graph analytic tasks and applications. In general, most GNNs depend on the homophily assumption that nodes belonging to the same class are more likely to be connected. However, as a ubiquitous graph property in numerous real-world scenarios, heterophily, i.e., nodes with different labels tend to be linked, significantly limits the performance of tailor-made homophilic GNNs. Hence, GNNs for heterophilic graphs are gaining increasing research attention to enhance graph learning with heterophily. In this paper, we provide a comprehensive review of GNNs for heterophilic graphs. Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models, along with a general summary and detailed analysis. Furthermore, we discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs across a spectrum of practical applications and learning tasks in the graph research community. In the end, we point out the potential directions to advance and stimulate more future research and applications on heterophilic graph learning with GNNs.Comment: 22 page

    GOODAT: Towards Test-time Graph Out-of-Distribution Detection

    Full text link
    Graph neural networks (GNNs) have found widespread application in modeling graph data across diverse domains. While GNNs excel in scenarios where the testing data shares the distribution of their training counterparts (in distribution, ID), they often exhibit incorrect predictions when confronted with samples from an unfamiliar distribution (out-of-distribution, OOD). To identify and reject OOD samples with GNNs, recent studies have explored graph OOD detection, often focusing on training a specific model or modifying the data on top of a well-trained GNN. Despite their effectiveness, these methods come with heavy training resources and costs, as they need to optimize the GNN-based models on training data. Moreover, their reliance on modifying the original GNNs and accessing training data further restricts their universality. To this end, this paper introduces a method to detect Graph Out-of-Distribution At Test-time (namely GOODAT), a data-centric, unsupervised, and plug-and-play solution that operates independently of training data and modifications of GNN architecture. With a lightweight graph masker, GOODAT can learn informative subgraphs from test samples, enabling the capture of distinct graph patterns between OOD and ID samples. To optimize the graph masker, we meticulously design three unsupervised objective functions based on the graph information bottleneck principle, motivating the masker to capture compact yet informative subgraphs for OOD detection. Comprehensive evaluations confirm that our GOODAT method outperforms state-of-the-art benchmarks across a variety of real-world datasets. The code is available at Github: https://github.com/Ee1s/GOODATComment: 9 pages, 5 figure

    A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection

    Full text link
    Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. Approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: Forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and, finally, discuss mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting both the foundations, practical applications, and opportunities of graph neural networks for time series analysis.Comment: 27 pages, 6 figures, 5 table

    Graph Spatiotemporal Process for Multivariate Time Series Anomaly Detection with Missing Values

    Full text link
    The detection of anomalies in multivariate time series data is crucial for various practical applications, including smart power grids, traffic flow forecasting, and industrial process control. However, real-world time series data is usually not well-structured, posting significant challenges to existing approaches: (1) The existence of missing values in multivariate time series data along variable and time dimensions hinders the effective modeling of interwoven spatial and temporal dependencies, resulting in important patterns being overlooked during model training; (2) Anomaly scoring with irregularly-sampled observations is less explored, making it difficult to use existing detectors for multivariate series without fully-observed values. In this work, we introduce a novel framework called GST-Pro, which utilizes a graph spatiotemporal process and anomaly scorer to tackle the aforementioned challenges in detecting anomalies on irregularly-sampled multivariate time series. Our approach comprises two main components. First, we propose a graph spatiotemporal process based on neural controlled differential equations. This process enables effective modeling of multivariate time series from both spatial and temporal perspectives, even when the data contains missing values. Second, we present a novel distribution-based anomaly scoring mechanism that alleviates the reliance on complete uniform observations. By analyzing the predictions of the graph spatiotemporal process, our approach allows anomalies to be easily detected. Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods, regardless of whether there are missing values present in the data. Our code is available: https://github.com/huankoh/GST-Pro.Comment: Accepted by Information Fusio

    Time-LLM: Time Series Forecasting by Reprogramming Large Language Models

    Full text link
    Time series forecasting holds significant importance in many real-world dynamic systems and has been extensively studied. Unlike natural language process (NLP) and computer vision (CV), where a single large model can tackle multiple tasks, models for time series forecasting are often specialized, necessitating distinct designs for different tasks and applications. While pre-trained foundation models have made impressive strides in NLP and CV, their development in time series domains has been constrained by data sparsity. Recent studies have revealed that large language models (LLMs) possess robust pattern recognition and reasoning abilities over complex sequences of tokens. However, the challenge remains in effectively aligning the modalities of time series data and natural language to leverage these capabilities. In this work, we present Time-LLM, a reprogramming framework to repurpose LLMs for general time series forecasting with the backbone language models kept intact. We begin by reprogramming the input time series with text prototypes before feeding it into the frozen LLM to align the two modalities. To augment the LLM's ability to reason with time series data, we propose Prompt-as-Prefix (PaP), which enriches the input context and directs the transformation of reprogrammed input patches. The transformed time series patches from the LLM are finally projected to obtain the forecasts. Our comprehensive evaluations demonstrate that Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models. Moreover, Time-LLM excels in both few-shot and zero-shot learning scenarios.Comment: Accepted by the 12th International Conference on Learning Representations (ICLR 2024
    corecore