21 research outputs found
The Role of Deubiquitinating Enzyme in Head and Neck Squamous Cell Carcinoma
Ubiquitination and deubiquitination are two popular ways for the post-translational modification of proteins. These two modifications affect intracellular localization, stability, and function of target proteins. The process of deubiquitination is involved in histone modification, cell cycle regulation, cell differentiation, apoptosis, endocytosis, autophagy, and DNA repair after damage. Moreover, it is involved in the processes of carcinogenesis and cancer development. In this review, we discuss these issues in understanding deubiquitinating enzyme (DUB) function in head and neck squamous cell carcinoma (HNSCC), and their potential therapeutic strategies for HNSCC patients are also discussed
EXPRESSION OF USP22 AND CPC IN ORAL CANCER
Oral cancer is a common cancer of the head and neck. Oral squamous cell carcinoma (OSCC) represents almost 90% of the total cases of head and neck cancer. Ubiquitin‑specific protease 22 (USP22) is a deubiquitinating hydrolase, and it is highly expressed in various types of cancer, which also typically have a poor prognosis. Aurora‑B and Survivin, which belong to the chromosomal passenger complex, are also highly expressed in a number of types of cancer. In the present study, USP22 expression and its associations with Aurora‑B and Survivin, and the clinicopathological features in OSCC were explored. USP22 is highly expressed in OSCC. Overexpression of USP22 is associated with lymph node metastasis and histological grade (P<0.01). Additionally, the expression of USP22 was positively associated with Aurora‑B (P<0.01), Survivin (P<0.01), and Ki‑67 (P<0.01). Furthermore, USP22 small interfering RNA inhibited cell growth and reduced the expression levels of Aurora‑B, Survivin and Cyclin B, together with the upregulation of cyclin‑dependent kinase inhibitor 1A (p21). These data suggest that USP22, Aurora‑B and Survivin promote the OSCC development and may represent novel targets for OSCC diagnosis and treatment in the future
Prognostic value of p-EMT-related genes in HNSCC
Objective: Recent studies have revealed that the ability of cancer cells to undergo intermediate state of EMT, partial EMT (p-EMT) poses a higher metastatic risk rather than complete EMT. Here we examined the prognostic value of p-EMT-related genes in head and neck squamous cell carcinoma (HNSCC) by bioinformatics approaches.
Materials and Methods: We used RNA-seq data of 519 primary HNSCC cases obtained from TCGA database. We compared the expression of p-EMT-related genes in HNSCC tissues with normal tissues. We evaluated the prognostic value of p-EMT-related genes in HNSCC cases by Log-rank test. We examined the expression of p-EMT-, EMT-, and epithelial differentiation-related genes by qPCR.
Results: Among p-EMT-related genes that were highly expressed in HNSCC cases, high expression of SERPINE1, ITGA5, TGFBI, P4HA2, CDH13, and LAMC2 was significantly correlated with poor survival of HNSCC patients. By gene expression pattern, HNSCC cell lines were classified into three groups; epithelial phenotype, EMT-phenotype, and p-EMT phenotype.
Conclusions: Our findings suggest that p-EMT program may be involved in poor prognosis of HNSCC. SERPINE1, ITGA5, TGFBI, P4HA2, CDH13, and LAMC2 can be used for a prognostic marker. Moreover, HNSCC cells with p-EMT phenotype can be a useful model for investigating a nature of p-EMT
Aurora Kinase Inhibitors in Head and Neck Cancer
Aurora kinases are a group of serine/threonine kinases responsible for the regulation of mitosis. In recent years, with the increase in Aurora kinase-related research, the important role of Aurora kinases in tumorigenesis has been gradually recognized. Aurora kinases have been regarded as a new target for cancer therapy, resulting in the development of Aurora kinase inhibitors. The study and application of these small-molecule inhibitors, especially in combination with chemotherapy drugs, represents a new direction in cancer treatment. This paper reviews studies on Aurora kinases from recent years, including studies of their biological function, their relationship with tumor progression, and their inhibitors
Involvement of the OTUB1-YAP1 axis in driving malignant behaviors of head and neck squamous cell carcinoma
Background: Comprehending the molecular mechanisms underlying head and neck squamous cell carcinoma (HNSCC) is vital for the development of effective treatment strategies. Deubiquitinating enzymes (DUBs), which regulate ubiquitin-dependent pathways, are potential targets for cancer therapy because of their structural advantages. Here we aimed to identify a potential target for HNSCC treatment among DUBs.
Methods: A screening process was conducted using RNA sequencing data and clinical information from HNSCC patients in the TCGA database. A panel of 88 DUBs was analyzed to identify those associated with poor prognosis. Subsequently, HNSCC cells were modified to overexpress specific DUBs, and their effects on cell proliferation and invasion were evaluated. In vivo experiments were performed to validate the findings.
Results: In HNSCC patients, USP10, USP14, OTUB1, and STAMBP among the screened DUBs were associated with a poor prognosis. Among them, OTUB1 showed the most aggressive characteristics in both in vitro and in vivo experiments. Additionally, OTUB1 regulated the stability and nuclear localization of YAP1, a substrate involved in cell proliferation and invasion. Notably, OTUB1 expression exhibited a positive correlation with the HNSCC-YAP score in HNSCC cells.
Conclusions: This study highlights the critical role of OTUB1 in HNSCC progression via modulating YAP1. Targeting the OTUB1-YAP1 axis holds promise as a potential therapeutic strategy for HNSCC treatment
Establishment of repeated liver biopsy technique in experimental mice
Biopsy is a commonly used method for determining pathological diagnoses by directly using human tissues and cells. Biopsies are widely used to determine disease progression and treatment efficacy. Although organs and tissues are usually obtained by sacrifice during animal experiments, it is theoretically possible to use the same biopsy techniques in humans. In the present study, we examined the feasibility of performing four repeated liver biopsies in a spontaneous metabolic syndrome mouse model. Even though a small number of mice died accidently, most mice were able to undergo four liver biopsies without significant adverse events. We also performed three liver biopsies in mouse liver tumor carcinogen models at 4, 8, and 12 weeks of age. In addition to the sample collected at 16 weeks of age during sacrifice, we successfully collected four liver samples from the same mice at different stages of disease progression. The application of this liver biopsy technique might make it possible for direct evaluation of pathological conditions in the same individual over time, thereby reducing the number of experimental animals
PARP6 acts as a tumor suppressor via downregulating Survivin expression in colorectal cancer
Poly (ADP-ribose) polymerases (PARPs) are enzymes that transfer ADP-ribose groups to target proteins and are involved in a variety of biological processes. PARP6 is a novel member, and our previous findings suggest that PARP6 may act as a tumor suppressor via suppressing cell cycle progression. However, it is still unclear that PARP6 function besides growth suppression in colorectal cancer (CRC). In this study, we examined tumor suppressive roles of PAPR6 in CRC cells both in vitro and in vivo. We found that PARP6 inhibited colony formation, invasion and migration as well as cell proliferation. Moreover, ectopic overexpression of PARP6 decreased Survivin expression, which acts as an oncogene and is involved in apoptosis and mitosis. We confirmed the inverse correlation between PARP6 and Survivin expression in CRC cases by immunohistochemistry. Importantly, CRC cases with downregulation of PARP6 and upregulation of Survivin showed poor prognosis. In summary, PARP6 acts as a tumor suppressor via downregulating Survivin expression in CRC. PARP6 can be a novel diagnostic and therapeutic target together with Survivin for CRC
The Role of Deubiquitinating Enzyme in Head and Neck Squamous Cell Carcinoma
Ubiquitination and deubiquitination are two popular ways for the post-translational modification of proteins. These two modifications affect intracellular localization, stability, and function of target proteins. The process of deubiquitination is involved in histone modification, cell cycle regulation, cell differentiation, apoptosis, endocytosis, autophagy, and DNA repair after damage. Moreover, it is involved in the processes of carcinogenesis and cancer development. In this review, we discuss these issues in understanding deubiquitinating enzyme (DUB) function in head and neck squamous cell carcinoma (HNSCC), and their potential therapeutic strategies for HNSCC patients are also discussed