178 research outputs found

    One-Step Preparation of Graphene Oxide/Cellulose Nanofibril Hybrid Aerogel for Adsorptive Removal of Four Kinds of Antibiotics

    Get PDF
    Via a one-step ultrasonication method, cellulose nanofibril/graphene oxide hybrid (GO-CNF) aerogel was successfully prepared. The as-prepared GO-CNF possessed interconnected 3D network microstructure based on GO nanosheets grown along CNF through hydrogen bonds. The aerogel exhibited superior adsorption capacity toward four kinds of antibiotics. The removal percentages (R%) of these antibiotics were 81.5%, 79.5%, 79.1%, and 73.9% for Doxycycline (DXC), Chlortetracycline (CTC), Oxytetracycline (OTC), and tetracycline (TC), respectively. Simultaneously, the adsorption isotherms were well fitted to Langmuir model and kinetics study implied that the adsorption process was attributed to pseudo-second-order model. The maximum theoretical adsorption capacities of GO-CNF were 469.7, 396.5, 386.5, and 343.8 mg·g−1 for DXC, CTC, OTC, and TC, respectively, calculated by the Langmuir isotherm models. After five cycles, importantly, the regenerated aerogels still could be used with little degradation of adsorption property. Consequently, the as-synthesized GO-CNF was a successful application of effective removal of antibiotics

    A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    Get PDF
    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.Hong Kong Research Grant Council [612113]; Hong Kong Innovation Technology Commission [ITS/362/14FP]; Fundamental Research Project of Shenzhen Science & Technology Foundation [JCYJ20130402164725025]; National Natural Science Foundation of China [61574005]; Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD]SCI(E)[email protected]; [email protected]

    Cross-Linked ZnO Nanowalls Immobilized onto Bamboo Surface and Their Use as Recyclable Photocatalysts

    Get PDF
    A novel recyclable photocatalyst was fabricated by hydrothermal method to immobilize the cross-linked ZnO nanowalls on the bamboo surface. The resultant samples were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and Fourier transformation infrared (FTIR) techniques. FTIR spectra demonstrated that the cross-linked wurtzite ZnO nanowalls and bamboo surface were interconnected with each other by hydrogen bonds. Meanwhile, the cross-linked ZnO nanowalls modified bamboo (CZNB) presented a superior photocatalytic ability and could be recycled at least 3 times with a photocatalytic efficiency up to 70%. The current research provides a new opportunity for the development of a portable and recycled biomass-based photocatalysts which can be an efficiently degraded pollutant solution and reused several times

    Superhydrophobicity, Microwave Absorbing Property of NiFe 2

    Get PDF
    Magnetic NiFe2O4 nanoparticles were successfully deposited on the wood surface via a hydrothermal process at 70°C. The surface of the as-prepared magnetic NiFe2O4/wood hybrids (MWHs) was covered by spherical-like NiFe2O4 particles with an average size of 50 nm. MWH exhibited the thermostability, microwave absorbability, and superparamagnetism with saturation magnetization (Ms) of 1.79 emu·g−1. With further modification by 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (FAS-17), MWH expressed superhydrophobic performances with a water contact angle of 158°. Its superparamagnetism stably remained under harsh conditions after chemical solutions corrosion and physical frozen test

    Multiscale modeling for the heterogeneous strength of biodegradable polyesters

    Get PDF
    A heterogeneous method of coupled multiscale strength model is presented in this paper for calculating the strength of medical polyesters such as polylactide (PLA), polyglycolide (PGA) and their copolymers during degradation by bulk erosion. The macroscopic device is discretized into an array of mesoscopic cells. A polymer chain is assumed to stay in one cell. With the polymer chain scission, it is found that the molecular weight, chain recrystallization induced by polymer chain scissions, and the cavities formation due to polymer cell collapse play different roles in the composition of mechanical strength of the polymer. Therefore, three types of strength phases were proposed to display the heterogeneous strength structures and to represent different strength contribution to polymers, which are amorphous phase, crystallinity phase and strength vacancy phase, respectively. The strength of the amorphous phase is related to the molecular weight; strength of the crystallinity phase is related to molecular weight and degree of crystallization; and the strength vacancy phase has negligible strength. The vacancy strength phase includes not only the cells with cavity status but also those with an amorphous status, but a molecular weight value below a threshold molecular weight. This heterogeneous strength model is coupled with micro chain scission, chain recrystallization and a macro oligomer diffusion equation to form a multiscale strength model which can simulate the strength phase evolution, cells status evolution, molecular weight, degree of crystallinity, weight loss and device strength during degradation. Different example cases are used to verify this model. The results demonstrate a good fit to experimental data

    Spawns Structure of Rod-Like ZnO Wrapped in Cellulose Nanofibers for Electromagnetic Wave Absorption

    Get PDF
    Spawns structure of rod-like ZnO wrapped in the cellulose nanofibers was successfully fabricated through a facile one-step hydrothermal method, and their electromagnetic wave absorption properties were investigated. The structure and properties of the composite aerogel were characterized. The enlarged morphology images showed that the as-prepared cellulose nanofiber/ZnO samples were spawns structure of rod-like ZnO wrapped in the cellulose nanofibers. The composite aerogel in a wax matrix exhibited excellent electromagnetic wave absorption performance over 2–18 GHz. The widest absorption bandwidth of 30 wt% contained with reflection loss values less than −10 dB was up to 12 GHz (6–18 GHz) at the thickness of 5.5 mm and the minimum reflection loss value reached −26.32 dB at 15.2 GHz when the thickness of the absorber was 3 mm

    The correlation between multimodal radiomics and pathology about thermal ablation lesion of rabbit lung VX2 tumor

    Get PDF
    ObjectiveTo explore the correlation of CT-MRI pathology with lung tumor ablation lesions by comparing CT, MRI, and pathological performance of rabbit lung VX2 tumor after thermal ablation.MethodsThermal ablation including microwave ablation (MWA) and radiofrequency ablation (RFA) was carried out in 12 experimental rabbits with lung VX2 tumors under CT guidance. CT and MRI performance was observed immediately after ablation, and then the rabbits were killed and pathologically examined. The maximum diameter of tumors on CT before ablation, the central hypointense area on T2-weighted image (T2WI) after ablation, and the central hyperintense area on T1-weighted image (T1WI) after ablation and pathological necrosis were measured. Simultaneously, the maximum diameter of ground-glass opacity (GGO) around the lesion on CT after ablation, the surrounding hyperintense area on T2WI after ablation, the surrounding isointense area on T1WI after ablation, and the pathological ablation area were measured, and then the results were compared and analyzed.ResultsAblation zones showed GGO surrounding the original lesion on CT, with a central hypointense and peripheral hyperintense zone on T2WI as well as a central hyperintense and peripheral isointense zone on T1WI. There was statistical significance in the comparison of the maximum diameter of the tumor before ablation with a central hyperintense zone on T1WI after ablation and pathological necrosis. There was also statistical significance in the comparison of the maximum diameter of GGO around the lesion on CT with the surrounding hyperintense zone on T2WI and isointense on T1WI after ablation and pathological ablation zone. There was only one residual tumor abutting the vessel in the RFA group.ConclusionsMRI manifestations of thermal ablation of VX2 tumors in rabbit lungs have certain characteristics with a strong pathological association. CT combined with MRI multimodal radiomics is expected to provide an effective new method for clinical evaluation of the immediate efficacy of thermal ablation of lung tumors

    Association of platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio with outcomes in stroke patients achieving successful recanalization by endovascular thrombectomy

    Get PDF
    ObjectiveSerum inflammatory biomarkers play crucial roles in the development of acute ischemic stroke (AIS). In this study, we explored the association between inflammatory biomarkers including platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), and monocyte-to-lymphocyte ratio (MLR), and clinical outcomes in AIS patients who achieved successful recanalization.MethodsPatients with AIS who underwent endovascular thrombectomy (EVT) and achieved a modified thrombolysis in the cerebral infarction scale of 2b or 3 were screened from a prospective cohort at our institution between January 2013 and June 2021. Data on blood parameters and other baseline characteristics were collected. The functional outcome was an unfavorable outcome defined by a modified Rankin Scale of 3–6 at the 3-month follow up. Other clinical outcomes included symptomatic intracranial hemorrhage (sICH) and 3-month mortality. Multivariable logistic regression analysis was performed to evaluate the effects of PLR, NLR, and MLR on clinical outcomes.ResultsA total of 796 patients were enrolled, of which 89 (11.2%) developed sICH, 465 (58.4%) had unfavorable outcomes at 3 months, and 168 (12.1%) died at the 3-month follow up. After adjusting for confounding variables, a higher NLR (OR, 1.076; 95% confidence interval [CI], 1.037–1.117; p < 0.001) and PLR (OR, 1.001; 95%CI, 1.000–1.003; p = 0.045) were significantly associated with unfavorable outcomes, the area under the receiver operating characteristic curve of NLR and PLR was 0.622 and 0.564, respectively. However, NLR, PLR, and MLR were not independently associated with sICH and 3-month mortality (all adjusted p > 0.05).ConclusionOverall, our results indicate that higher PLR and NLR were independently associated with unfavorable functional outcomes in AIS patients with successful recanalization after EVT; however, the underlying mechanisms are yet to be elucidated
    • …
    corecore