29 research outputs found

    Design methods of transversally laminated synchronous reluctance machines

    No full text
    Transversally laminated synchronous reluctance machine (SynRM) are usually designed with multiple-layer flux barriers to achieve high electromagnetic performance. This paper summarizes three design methods to optimize the machine. Related implementation procedures are detailed. Besides, advantages and disadvantages of these methods are discussed. Based on these conventional techniques, a comprehensive optimization method is proposed, with which a prototype SynRM is designed. The performances of this prototype are discussed to verify the optimal design method

    Mesoscale modelling of bond failure behaviour of ribbed steel bar and concrete interface

    No full text
    To explore the nonlinear bond behaviour between ribbed bar and concrete, combined with the characteristics of concrete meso-structure and ribbed bar surface characteristics and considering frictional resistance and the mechanical interlocking between rebar and concrete, a meso-scale model is established. Based on the good agreement between the simulation results and experimental results, the failure mechanism of bond between rebar and concrete is discussed, and the distribution characteristics of bond stress of steel bar are analysed. Furthermore, based on the meso numerical analysis method, the influence of friction coefficient between rebar and concrete on the failure mode of concrete and bond stress-slip curve was discussed, and the proportion of friction component in bond strength is obtained

    Physiological and Transcriptional Responses of Industrial Rapeseed (Brassica napus) Seedlings to Drought and Salinity Stress

    No full text
    Abiotic stress greatly inhibits crop growth and reduces yields. However, little is known about the transcriptomic changes that occur in the industrial oilseed crop, rapeseed (Brassica napus), in response to abiotic stress. In this study, we examined the physiological and transcriptional responses of rapeseed to drought (simulated by treatment with 15% (w/v) polyethylene glycol (PEG) 6000) and salinity (150 mM NaCl) stress. Proline contents in young seedlings greatly increased under both conditions after 3 h of treatment, whereas the levels of antioxidant enzymes remained unchanged. We assembled transcripts from the leaves and roots of rapeseed and performed BLASTN searches against the rapeseed genome database for the first time. Gene ontology analysis indicated that DEGs involved in catalytic activity, metabolic process, and response to stimulus were highly enriched. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that differentially expressed genes (DEGs) from the categories metabolic pathways and biosynthesis of secondary metabolites were highly enriched. We determined that myeloblastosis (MYB), NAM/ATAF1-2/CUC2 (NAC), and APETALA2/ethylene-responsive element binding proteins (AP2-EREBP) transcription factors function as major switches that control downstream gene expression and that proline plays a role under short-term abiotic stress treatment due to increased expression of synthesis and decreased expression of degradation. Furthermore, many common genes function in the response to both types of stress in this rapeseed

    DOCK1 regulates the malignant biological behavior of endometrial cancer through c-Raf/ERK pathway

    No full text
    Abstract Background The effect of DOCK1 gene on the biological behavior of endometrial carcinoma cells and its related pathway has not been reported. Methods The immunohistochemical method and western blot were utilized to analyze DOCK1 protein expression in endometrial tissues and cells, respectively. CCK-8, BrdU, transwell and flow cytometry were performed to analyze the effect of DOCK1 expression changes on the viability, proliferation, invasion, migration and apoptosis of endometrial cancer cells, respectively. The effects of DOCK1 gene on Bcl-2, MMP9, Ezrin, E-cadherin and c-RAF/ERK1/2 signaling pathway were evaluated by western blot. The xenograft models were constructed to analyze the effect of DOCK1 in vivo. Results DOCK1 expression was increased in endometrial cancer tissues and cells compared with those in normal adjacent tissues and cells. DOCK1 knockout could inhibit the malignant biological behavior of endometrial cancer cells, while DOCK1 overexpression played the opposite effect. The expression of E-cadherin was upregulated and those of MMP9, Ezrin, Bcl-2, p-c-RAF (S338) and p-ERK1/2 (T202/Y204) were downregulated after DOCK1 knockout, while DOCK1 overexpression played the opposite effect. Additionally, Raf inhibitor LY3009120 reversed the function of DOCK1 on malignant biological behavior. In vivo experiment results showed that the growth and weight of transplanted tumors in nude mice were inhibited after DOCK1 knockout. The changes of E-cadherin, MMP9, Ezrin and Bcl-2 expressions in the transplanted tumors were consistent with those in vitro. Conclusion DOCK1 could enhance the malignant biological behavior of endometrial cancer cells, which might be through c-RAF/ERK1/2 signaling pathways in vitro and in vivo

    Flexible lead-free ba0.5 sr0.5 tio3 /0.4bifeo3-0.6srtio3 dielectric film capacitor with high energy storage performance

    No full text
    Ferroelectric thin film capacitors have triggered great interest in pulsed power systems because of their high-power density and ultrafast charge–discharge speed, but less attention has been paid to the realization of flexible capacitors for wearable electronics and power systems. In this work, a flexible Ba0.5 Sr0.5 TiO3 /0.4BiFeO3-0.6SrTiO3 thin film capacitor is synthesized on mica substrate. It possesses an energy storage density of Wrec ~ 62 J cm−3, combined with an efficiency of η ~ 74% due to the moderate breakdown strength (3000 kV cm−1 ) and the strong relaxor behavior. The energy storage performances for the film capacitor are also very stable over a broad temperature range (−50–200◦ C) and frequency range (500 Hz–20 kHz). Moreover, the Wrec and η are stabilized after 108 fatigue cycles. Additionally, the superior energy storage capability can be well maintained under a small bending radius (r = 2 mm), or after 104 mechanical bending cycles. These results reveal that the Ba0.5 Sr0.5 TiO3 /0.4BiFeO3-0.6SrTiO3 film capacitors in this work have great potential for use in flexible microenergy storage systems

    Joining of 304 stainless steel to PET by semiconductor laser conduction welding

    No full text
    304 stainless steel (304SS) and polyethylene terephthalate (PET) were lapped joined by laser conduction welding using a semiconductor laser with a flat-top thermal distribution. Experimental investigation and numerical simulation were conducted to analyze the weld morphology, pores distribution, interfacial microstructure, temperature field, joint strength and fracture behavior of the laser dissimilar joints. Because of the uniform thermal distribution of the laser, the decomposition of the PET base material was well controlled with pore-free joints obtaining at the welding speed over 25 mm/s. Besides, a compound layer was generated at the interface between 304SS and PET with its thickness decreased when the welding speed increased. Chemical reactions and mechanical anchoring were both observed at the interface suggesting a dual joining mechanism. The joint fracture load first increased then decreased with the increased welding speed. Besides, a ductile to brittle failure transition was clearly seen. The underlying mechanism was also discussed
    corecore