2 research outputs found

    Soil Labile Organic Carbon Fractions and Soil Enzyme Activities After 10 Years of Continuous Fertilization and Wheat Residue Incorporation

    Get PDF
    Labile organic carbon (LOC) fractions and related enzyme activities in soils are considered to be early and sensitive indicators of soil quality changes. We investigated the influences of fertilization and residue incorporation on LOC fractions, enzyme activities, and the carbon pool management index (CPMI) in a 10-year field experiment. The experiment was composed of three treatments: (1) no fertilization (control), (2) chemical fertilizer application alone (F), and (3) chemical fertilizer application combined with incorporation of wheat straw residues (F + R). Generally, the F + R treatment led to the highest concentrations of the LOC fractions. Compared to the control treatment, the F + R treatment markedly enhanced potential activities of cellulase (CL), β-glucosidase (BG), lignin peroxidase (LiP), and manganese peroxidase (MnP), but decreased laccase (LA) potential activity. Partial least squares regression analysis suggested that BG and MnP activities had a positive impact on the light-fraction organic carbon (LFOC), permanganate-oxidizable carbon (POXC), and dissolved organic carbon (DOC) fractions, whereas laccase activity had a negative correlation with those fractions. In addition, the F + R treatment significantly increased the CPMI compared to the F and control treatments. These results indicated that combining fertilization with crop residues stimulates production of LOC and could be a useful approach for maintaining sustainable production capacity in lime concretion black soils along the Huai River region of China

    High Level of Iron Inhibited Maize Straw Decomposition by Suppressing Microbial Communities and Enzyme Activities

    No full text
    In order to study the linkages between the crop straw decomposition rate and the change in soil biological properties after the straw returned to the soil with different iron (Fe2+) contents, a 180-day incubation experiment was performed to examine the decomposition of maize straw (MS) under three Fe2+ levels, i.e., 0, 0.3, and 1 mg g−1. Enzyme activities regarding straw decomposition and microbial communities under 0 and 1 mg g−1 Fe addition were also detected. The results showed that Fe2+ addition significantly inhibited MS decomposition. This was evidenced by the higher contents of hemicellulose, cellulose, and lignin in Fe2+ treatments on day 180. High-Fe addition (1 mg g−1) decreased the activity of Laccase (Lac) by 71.82% compared with control on day 30. Furthermore, the principal coordinates analysis (PCoA) indicated that high-Fe mainly affected the bacterial community. In particular, it suppressed the relative abundance of Microbacteriaceae in phylum Actinomycota that, in turn, is a potential decomposer of crop straw by secreting lignocellulolytic enzymes. A high level of Fe2+ inhibited the decomposition of hemicellulose, cellulose, and lignin in MS by reducing the relative abundance of phylum Actinobacteria in bacteria and suppressing Lac activity. Our findings provide guidance for returning crop straws in soils with high-Fe content
    corecore