18,873 research outputs found

    Brane structures in microlocal sheaf theory

    Full text link
    Let LL be an exact Lagrangian submanifold of a cotangent bundle TMT^* M, asymptotic to a Legendrian submanifold ΛTM\Lambda \subset T^{\infty} M. We study a locally constant sheaf of \infty-categories on LL, called the sheaf of brane structures or BraneL\mathrm{Brane}_L. Its fiber is the \infty-category of spectra, and we construct a Hamiltonian invariant, fully faithful functor from Γ(L,BraneL)\Gamma(L,\mathrm{Brane}_L) to the \infty-category of sheaves of spectra on MM with singular support in Λ\Lambda.Comment: 35 pages, 13 figure

    Asymptotic minimaxity of False Discovery Rate thresholding for sparse exponential data

    Full text link
    We apply FDR thresholding to a non-Gaussian vector whose coordinates X_i, i=1,..., n, are independent exponential with individual means μi\mu_i. The vector μ=(μi)\mu =(\mu_i) is thought to be sparse, with most coordinates 1 but a small fraction significantly larger than 1; roughly, most coordinates are simply `noise,' but a small fraction contain `signal.' We measure risk by per-coordinate mean-squared error in recovering log(μi)\log(\mu_i), and study minimax estimation over parameter spaces defined by constraints on the per-coordinate p-norm of log(μi)\log(\mu_i): 1ni=1nlogp(μi)ηp\frac{1}{n}\sum_{i=1}^n\log^p(\mu_i)\leq \eta^p. We show for large n and small η\eta that FDR thresholding can be nearly Minimax. The FDR control parameter 0<q<1 plays an important role: when q1/2q\leq 1/2, the FDR estimator is nearly minimax, while choosing a fixed q>1/2 prevents near minimaxity. These conclusions mirror those found in the Gaussian case in Abramovich et al. [Ann. Statist. 34 (2006) 584--653]. The techniques developed here seem applicable to a wide range of other distributional assumptions, other loss measures and non-i.i.d. dependency structures.Comment: Published at http://dx.doi.org/10.1214/009053606000000920 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Higher criticism for detecting sparse heterogeneous mixtures

    Full text link
    Higher criticism, or second-level significance testing, is a multiple-comparisons concept mentioned in passing by Tukey. It concerns a situation where there are many independent tests of significance and one is interested in rejecting the joint null hypothesis. Tukey suggested comparing the fraction of observed significances at a given \alpha-level to the expected fraction under the joint null. In fact, he suggested standardizing the difference of the two quantities and forming a z-score; the resulting z-score tests the significance of the body of significance tests. We consider a generalization, where we maximize this z-score over a range of significance levels 0<\alpha\leq\alpha_0. We are able to show that the resulting higher criticism statistic is effective at resolving a very subtle testing problem: testing whether n normal means are all zero versus the alternative that a small fraction is nonzero. The subtlety of this ``sparse normal means'' testing problem can be seen from work of Ingster and Jin, who studied such problems in great detail. In their studies, they identified an interesting range of cases where the small fraction of nonzero means is so small that the alternative hypothesis exhibits little noticeable effect on the distribution of the p-values either for the bulk of the tests or for the few most highly significant tests. In this range, when the amplitude of nonzero means is calibrated with the fraction of nonzero means, the likelihood ratio test for a precisely specified alternative would still succeed in separating the two hypotheses.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000026

    Two-Layered Superposition of Broadcast/Multicast and Unicast Signals in Multiuser OFDMA Systems

    Full text link
    We study optimal delivery strategies of one common and KK independent messages from a source to multiple users in wireless environments. In particular, two-layered superposition of broadcast/multicast and unicast signals is considered in a downlink multiuser OFDMA system. In the literature and industry, the two-layer superposition is often considered as a pragmatic approach to make a compromise between the simple but suboptimal orthogonal multiplexing (OM) and the optimal but complex fully-layered non-orthogonal multiplexing. In this work, we show that only two-layers are necessary to achieve the maximum sum-rate when the common message has higher priority than the KK individual unicast messages, and OM cannot be sum-rate optimal in general. We develop an algorithm that finds the optimal power allocation over the two-layers and across the OFDMA radio resources in static channels and a class of fading channels. Two main use-cases are considered: i) Multicast and unicast multiplexing when KK users with uplink capabilities request both common and independent messages, and ii) broadcast and unicast multiplexing when the common message targets receive-only devices and KK users with uplink capabilities additionally request independent messages. Finally, we develop a transceiver design for broadcast/multicast and unicast superposition transmission based on LTE-A-Pro physical layer and show with numerical evaluations in mobile environments with multipath propagation that the capacity improvements can be translated into significant practical performance gains compared to the orthogonal schemes in the 3GPP specifications. We also analyze the impact of real channel estimation and show that significant gains in terms of spectral efficiency or coverage area are still available even with estimation errors and imperfect interference cancellation for the two-layered superposition system

    Priority-Based Synchronization of Distributed Data

    Full text link
    We consider the general problem of synchronizing the data on two devices using a minimum amount of communication, a core infrastructural requirement for a large variety of distributed systems. Our approach considers the interactive synchronization of prioritized data, where, for example, certain information is more time-sensitive than other information. We propose and analyze a new scheme for efficient priority-based synchronization, which promises benefits over conventional synchronization
    corecore