308 research outputs found

    Radiation Pressure Supported AGN Tori with Hard X-Ray and Stellar Heating

    Full text link
    The dynamics and structure of toroidal obscuration around AGN remain uncertain and controversial. In this paper we extend earlier work on the dynamical role of infrared radiation pressure by adding the effects of two kinds of distributed heating: Compton-heating due to hard X-rays from the nucleus and local starlight heating. We find numerical solutions to the axisymmetric hydrostatic equilibrium, energy balance, and photon diffusion equations including these effects. Within the regime of typical parameters, the two different sources of additional heating have very similar effects: the density profile within the torus becomes shallower both radially and vertically, but for plausible heating rates, there is only minor change (relative to the source-free case) in the distribution of column density with solid angle. The most interesting consequence of distributed heating is that it selects out a relatively narrow range of parameters permitting an equilibrium, particularly (L/LE)/Ï„T(L/L_E)/\tau_T. We discuss the implications of both the narrowness of the permitted range and its approximate coincidence with the range inferred from observations.Comment: 27 pages, 8 figures, accepted by Ap

    A Tensor-Based Framework for Studying Eigenvector Multicentrality in Multilayer Networks

    Full text link
    Centrality is widely recognized as one of the most critical measures to provide insight in the structure and function of complex networks. While various centrality measures have been proposed for single-layer networks, a general framework for studying centrality in multilayer networks (i.e., multicentrality) is still lacking. In this study, a tensor-based framework is introduced to study eigenvector multicentrality, which enables the quantification of the impact of interlayer influence on multicentrality, providing a systematic way to describe how multicentrality propagates across different layers. This framework can leverage prior knowledge about the interplay among layers to better characterize multicentrality for varying scenarios. Two interesting cases are presented to illustrate how to model multilayer influence by choosing appropriate functions of interlayer influence and design algorithms to calculate eigenvector multicentrality. This framework is applied to analyze several empirical multilayer networks, and the results corroborate that it can quantify the influence among layers and multicentrality of nodes effectively.Comment: 57 pages, 10 figure

    Special Issue on Wireless Sensor and Actuator Networks

    Get PDF
    ( First paragraph) WIRELESS Sensor Networks (WSNs), in their various shapes and forms, have greatly facilitated and enhanced the automated, remote, and intelligent monitoring of a large variety of physical systems. These networks consist of a large number of typically small devices, each incorporating sensing, processing, and wireless communications capabilities. Their use has penetrated a plethora of application domains from industrial and building automation, to environmental, wildlife, and health monitoring

    Electroluminescence from single nanowires by tunnel injection: an experimental study

    Get PDF
    We present a hybrid light-emitting diode structure composed of an n-type gallium nitride nanowire on a p-type silicon substrate in which current is injected along the length of the nanowire. The device emits ultraviolet light under both bias polarities. Tunnel-injection of holes from the p-type substrate (under forward bias) and from the metal (under reverse bias) through thin native oxide barriers consistently explains the observed electroluminescence behaviour. This work shows that the standard p-n junction model is generally not applicable to this kind of device structure.Comment: 6 pages, 6 figure

    Toward nature-inspired computing

    Full text link

    All Optical Implementation of Multi-Spin Entanglement in a Semiconductor Quantum Well

    Full text link
    We use ultrafast optical pulses and coherent techniques to create spin entangled states of non-interacting electrons bound to donors (at least three) and at least two Mn2+ ions in a CdTe quantum well. Our method, relying on the exchange interaction between localized excitons and paramagnetic impurities, can in principle be applied to entangle a large number of spins.Comment: 17 pages, 3 figure

    A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region

    Get PDF
    The Beijing–Tianjin–Hebei (BTH) region has been suffering from the most severe fine-particle (PM2:5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2:5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2:5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2:5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2:5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2:5 makes the largest contribution (24–36 %) to PM2:5 concentrations. The contribution of primary inorganic PM2:5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2:5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx ; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2:5 concentrations range between 31 and 48 %. Among these precursors, PM2:5 concentrations are primarily sensitive to the emissions of NH3, NMVOCCIVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOCCIVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2:5 concentrations. The contributions of primary inorganic PM2:5 emissions to PM2:5 concentrations are dominated by local emission sources, which account for over 75% of the total primary inorganic PM2:5 contributions. For precursors, however, emissions from other regions could play similar roles to local emission sources in the summer and over the northern part of BTH. The source contribution features for various types of heavy-pollution episodes are distinctly different from each other and from the monthly mean results, illustrating that control strategies should be differentiated based on the major contributing sources during different types of episodes.publishedVersio

    Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting

    Get PDF
    Developing stable and efficient bifunctional catalysts for overall water splitting into hydrogen and oxygen is a critical step in the realization of several clean-energy technologies. Here we report a robust and highly active electrocatalyst that is constructed by deposition of the ternary metal phosphide FeMnP onto graphene-protected nickel foam by metal-organic chemical vapor deposition from a single source precursor. FeMnP exhibits high electrocatalytic activity toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Utilizing FeMnP/GNF as both the anode and the cathode for overall water splitting, a current density of 10 mA cm−2 is achieved at a cell voltage of as low as 1.55 V with excellent stability. Complementary density functional theory (DFT) calculations suggest that facets exposing both Fe and Mn sites are necessary to achieve high HER activity. The present work provides a facile strategy for fabricating highly efficient electrocatalysts from earth-abundant materials for overall water splitting
    • …
    corecore