29 research outputs found
Evolution of bdnf full-length/truncated receptor ratio and cognitive/general functioning after a first episode of psychosis
Brain plasticity has demonstrated to play a role in the pathophysiology of schizophrenia. Cognitive deterioration in these patients can be prevented by ensuring the adequate functioning of signaling pathways associated with brain plasticity. As BDNF exerts its action through receptors, in this study, we hypothesized that levels of some BDNF receptors during a first episode of psychosis (FEP) would correlate with the cognitive and global functioning of patients in the long term. We also hypothesized that the improvement of the ratio of full-length (TrKB-FL) and truncated (TrKB-T) TrKB receptors, and the predominance of the full-length isoform would be associated with better cognition and functioning. Peripheral levels of full-length (TrKB-FL) and truncated (TrKB-T) TrKB receptors were assessed in a sample of 97 FEP patients and 97 matched healthy controls. TrKB-FL/TrKB-T ratio(hereinafter, FL/T) was calculated for each patient. Cognitive and global functioning was measured at inclusion and at two years. A high baseline FL/T ratio was found to be related to a better cognitive function (global cognition, verbal memory, working memory and premorbid IQ). Cognitive performance at disease onset and at two years improved when the levels of the ratio were higher than one, with functional BDNF receptor (TrKB-FL) exceeding the value of the truncated isoform (TrKB-T). In addition the increase in the FL/T ratio during the two years of follow-up had positive effects on global functioning. This may be due either to a reduction in TrKB-T or to an increase in TrKB-FL, or both. In conclusion FL / T ratio was related to general functioning and cognition in the long-term
BDNF and NGF Signalling in Early Phases of Psychosis: Relationship with Inflammation and Response to Antipsychotics after 1 Year
Previous studies have indicated systemic deregulation of the proinflammatory or anti-inflammatory balance in individuals with first-episode psychosis (FEP) that persists 12 months later. To identify potential risk/protective factors and associations with symptom severity, we assessed possible changes in plasma levels of neurotrophins (brain-derived neurotrophic factor BDNF] and nerve growth factor NGF]) and their receptors in peripheral blood mononuclear cells (PBMCs). Expression of the 2 forms of BDNF receptors (active TrkB-FL and inactiveTrkB-T1) in PBMCs of FEP patients changed over time, TrkB-FL expression increasing by 1 year after diagnosis, while TrkB-T1 expression decreased. The TrkB-FL/TrkB-T1 ratio (hereafter FL/T1 ratio) increased during follow-up in the nonaffective psychosis group only, suggesting different underlying pathophysiological mechanisms in subgroups of FEP patients. Further, the expression of the main NGF receptor, TrkA, generally increased in patients at follow-up. After adjusting for potential confounders, baseline levels of inducible isoforms of nitric oxide synthase, cyclooxygenase, and nuclear transcription factor were significantly associated with the FL/T1 ratio, suggesting that more inflammation is associated with higher values of this ratio. Interestingly, the FL/T1 ratio might have a role as a predictor of functioning, a regression model of functioning at 1 year suggesting that the effect of the FL/T1 ratio at baseline on functioning at 1 year depended on whether patients were treated with antipsychotics. These findings may have translational relevance; specifically, it might be useful to assess the expression of TrkB receptor isoforms before initiating antipsychotic treatment in FEPs
BDNF and NGF signalling in early phases of psychosis: relationship with inflammation and response to antipsychotics after a 1 year
Previous studies have indicated systemic deregulation of the proinflammatory or anti-inflammatory balance in individuals with first-episode psychosis (FEP) that persists 12 months later. To identify potential risk/protective factors and associations with symptom severity, we assessed possible changes in plasma levels of neurotrophins (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]) and their receptors in peripheral blood mononuclear cells (PBMCs). Expression of the 2 forms of BDNF receptors (active TrkB-FL and inactiveTrkB-T1) in PBMCs of FEP patients changed over time, TrkB-FL expression increasing by 1 year after diagnosis, while TrkB-T1 expression decreased. The TrkB-FL/TrkB-T1 ratio (hereafter FL/T1 ratio) increased during follow-up in the nonaffective psychosis group only, suggesting different underlying pathophysiological mechanisms in subgroups of FEP patients. Further, the expression of the main NGF receptor, TrkA, generally increased in patients at follow-up. After adjusting for potential confounders, baseline levels of inducible isoforms of nitric oxide synthase, cyclooxygenase, and nuclear transcription factor were significantly associated with the FL/T1 ratio, suggesting that more inflammation is associated with higher values of this ratio. Interestingly, the FL/T1 ratio might have a role as a predictor of functioning, a regression model of functioning at 1 year suggesting that the effect of the FL/T1 ratio at baseline on functioning at 1 year depended on whether patients were treated with antipsychotics. These findings may have translational relevance; specifically, it might be useful to assess the expression of TrkB receptor isoforms before initiating antipsychotic treatment in FEP
Association of prolactin, oxytocin, and homocysteine with the clinical and cognitive features of a first episode of psychosis over a 1-year follow-up
Background: The clinical debut of schizophrenia is frequently a first episode of psychosis (FEP). As such, there is considerable interest in identifying associations between biological markers and clinical or cognitive characteristics that help predict the progression and outcome of FEP patients. Previous studies showed that high prolactin, low oxytocin, and high homocysteine are factors associated with FEP 6 months after diagnosis, at which point plasma levels were correlated with some clinical and cognitive characteristics.
Methods: We reexamined 75 patients at 12 months after diagnosis to measure the evolution of these molecules and assess their association with clinical features.
Results: At follow-up, FEP patients had lower prolactin levels than at baseline, and patients treated with risperidone or paliperidone had higher prolactin levels than patients who received other antipsychotic agents. By contrast, no changes in oxytocin and homocysteine plasma levels were observed between the baseline and follow-up. In terms of clinical features, we found that plasma prolactin and homocysteine levels were correlated with the severity of the psychotic symptoms in male FEP patients, suggesting that they might be factors associated with psychotic symptomatology but only in men. Together with oxytocin, these molecules may also be related to sustained attention, verbal ability, and working memory cognitive domains in FEP patients.
Conclusion: This study suggests that focusing on prolactin, oxytocin, and homocysteine at a FEP may help select adequate pharmacological treatments and develop new tools to improve the outcome of these patients, where sex should also be borne in mind
The influence of oxytocin and prolactin during a first-episode of psychosis: the implication of sex differences, clinical features and cognitive performance
Background: Approximately 3% of the population suffers a first episode of psychosis (FEP), and a high percentage of these patients subsequently relapse. Because the clinical course following a FEP is hard to predict, it is of interest to identify cognitive and biological markers that will help improve the diagnosis, treatment, and outcome of such events and to define new therapeutic targets. Here we analyzed the plasma oxytocin and prolactin levels during an FEP, assessing their correlation with clinical and cognitive features. Methods: The oxytocin and prolactin in plasma was measured in 120 FEP patients and 106 healthy controls, all of whom were subjected to a clinical and neuropsychological assessment. Most patients were under antipsychotics. Statistical analyses aimed to identify factors associated with the FEP and to search for associations between the variables. This study is preliminary and exploratory because the P-values were not corrected for multiple comparisons. Results: FEP patients had less oxytocin, more prolactin, and a poor premorbid IQ, and they performed worse in sustained attention. Male patients with higher prolactin levels experienced more severe psychotic symptoms and required higher doses of antipsychotics. Low oxytocin was associated with poor sustained attention in women, whereas low oxytocin and high prolactin in men correlated with better performance in sustained attention. Conclusion: Low oxytocin, high prolactin, and poor premorbid IQ and sustained attention are factors associated with an FEP, representing potential therapeutic targets in these patients. These biological factors and cognitive domains might play an important role during a FEP, which could help us to develop new strategies that improve the outcomes of this disorder and that should perhaps be gender specific
The Influence of Oxytocin and Prolactin During a First Episode of Psychosis: The Implication of Sex Differences, Clinical Features, and Cognitive Performance
Background Approximately 3% of the population suffers a first episode of psychosis (FEP), and a high percentage of these patients subsequently relapse. Because the clinical course following a FEP is hard to predict, it is of interest to identify cognitive and biological markers that will help improve the diagnosis, treatment, and outcome of such events and to define new therapeutic targets. Here we analyzed the plasma oxytocin and prolactin levels during an FEP, assessing their correlation with clinical and cognitive features. Methods The oxytocin and prolactin in plasma was measured in 120 FEP patients and 106 healthy controls, all of whom were subjected to a clinical and neuropsychological assessment. Most patients were under antipsychotics. Statistical analyses aimed to identify factors associated with the FEP and to search for associations between the variables. This study is preliminary and exploratory because the P-values were not corrected for multiple comparisons. Results FEP patients had less oxytocin, more prolactin, and a poor premorbid IQ, and they performed worse in sustained attention. Male patients with higher prolactin levels experienced more severe psychotic symptoms and required higher doses of antipsychotics. Low oxytocin was associated with poor sustained attention in women, whereas low oxytocin and high prolactin in men correlated with better performance in sustained attention. Conclusion Low oxytocin, high prolactin, and poor premorbid IQ and sustained attention are factors associated with an FEP, representing potential therapeutic targets in these patients. These biological factors and cognitive domains might play an important role during a FEP, which could help us to develop new strategies that improve the outcomes of this disorder and that should perhaps be gender specific
A longitudinal study of gene expression in first-episode schizophrenia; exploring relapse mechanisms by co-expression analysis in peripheral blood.
Little is known about the pathophysiological mechanisms of relapse in first-episode schizophrenia, which limits the study of potential biomarkers. To explore relapse mechanisms and identify potential biomarkers for relapse prediction, we analyzed gene expression in peripheral blood in a cohort of first-episode schizophrenia patients with less than 5 years of evolution who had been evaluated over a 3-year follow-up period. A total of 91 participants of the 2EPs project formed the sample for baseline gene expression analysis. Of these, 67 provided biological samples at follow-up (36 after 3 years and 31 at relapse). Gene expression was assessed using the Clariom S Human Array. Weighted gene co-expression network analysis was applied to identify modules of co-expressed genes and to analyze their preservation after 3 years of follow-up or at relapse. Among the 25 modules identified, one module was semi-conserved at relapse (DarkTurquoise) and was enriched with risk genes for schizophrenia, showing a dysregulation of the TCF4 gene network in the module. Two modules were semi-conserved both at relapse and after 3 years of follow-up (DarkRed and DarkGrey) and were found to be biologically associated with protein modification and protein location processes. Higher expression of DarkRed genes was associated with higher risk of suffering a relapse and early appearance of relapse (p = 0.045). Our findings suggest that a dysregulation of the TCF4 network could be an important step in the biological process that leads to relapse and suggest that genes related to the ubiquitin proteosome system could be potential biomarkers of relapse
Relapse, cognitive reserve, and their relationship with cognition in first episode schizophrenia: a 3-year follow-up study
Schizophrenia is frequently characterized by the presence of multiple relapses. Cognitive impairments are core features of schizophrenia. Cognitive reserve (CR) is the ability of the brain to compensate for damage caused by pathologies such as psychotic illness. As cognition is related to CR, the study of the relationship between relapse, cognition and CR may broaden our understanding of the course of the disease. We aimed to determine whether relapse was associated with cognitive impairment, controlling for the effects of CR. Ninety-nine patients with a remitted first episode of schizophrenia or schizophreniform disorder were administered a set of neuropsychological tests to assess premorbid IQ, attention, processing speed, working memory, verbal and visual memory, executive functions and social cognition. They were followed up for 3 years (n=53) or until they relapsed (n=46). Personal and familial CR was estimated from a principal component analysis of the premorbid information gathered. Linear mixed-effects models were applied to analyse the effect of time and relapse on cognitive function, with CR as covariate. Patients who relapsed and had higher personal CR showed less deterioration in attention, whereas those with higher CR (personal and familial CR) who did not relapse showed better performance in processing speed and visual memory. Taken together, CR seems to ameliorate the negative effects of relapse on attention performance and shows a positive effect on processing speed and visual memory in those patients who did not relapse. Our results add evidence for the protective effect of CR over the course of the illness
The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum
Records of the paleoenvironmental changes that occurred during the Paleocene-Eocene Thermal Maximum (PETM) are preserved in sedimentary rocks along the margins of the former Tethys Ocean and Peri-Tethys. This paper presents new geochemical data that constrain paleoproductivity, sediment delivery, and seawater redox conditions, from three sites that were located in the Peri-Tethys region. Trace and major element, iron speciation, and biomarker data indicate that water column anoxia was established during episodes when inputs of land-derived higher plant organic carbon and highly weathered detrital clays and silts became relatively higher. Anoxic conditions are likely to have been initially caused by two primary processes: (i) oxygen consumption by high rates of marine productivity, initially stimulated by the rapid delivery of terrestrially derived organic matter and nutrients, and (ii) phosphorus regeneration from seafloor sediments. The role of the latter process requires further investigation before its influence on the spread of deoxygenated seawater during the PETM can be properly discerned. Other oxygen-forcing processes, such as temperature/salinity-driven water column stratification and/or methane oxidation, are considered to have been relatively less important in the study region. Organic carbon enrichments occur only during the initial stages of the PETM as defined by the negative carbon isotope excursions at each site. The lack of observed terminal stage organic carbon enrichment does not support a link between PETM climate recovery and the sequestration of excess atmospheric CO2 as organic carbon in this region; such a feedback may, however, have been important in the early stages of the PETM
Gene co-expression architecture in peripheral blood in a cohort of remitted first-episode schizophrenia patients
A better understanding of schizophrenia subtypes is necessary to stratify the patients according to clinical attributes. To explore the genomic architecture of schizophrenia symptomatology, we analyzed blood co-expression modules and their association with clinical data from patients in remission after a first episode of schizophrenia. In total, 91 participants of the 2EPS project were included. Gene expression was assessed using the Clariom S Human Array. Weighted-gene co-expression network analysis (WGCNA) was applied to identify modules of co-expressed genes and to test its correlation with global functioning, clinical symptomatology, and premorbid adjustment. Among the 25 modules identified, six modules were significantly correlated with clinical data. These modules could be clustered in two groups according to their correlation with clinical data. Hub genes in each group showing overlap with risk genes for schizophrenia were enriched in biological processes related to metabolic processes, regulation of gene expression, cellular localization and protein transport, immune processes, and neurotrophin pathways. Our results indicate that modules with significant associations with clinical data showed overlap with gene sets previously identified in differential gene-expression analysis in brain, indicating that peripheral tissues could reveal pathogenic mechanisms. Hub genes involved in these modules revealed multiple signaling pathways previously related to schizophrenia, which may represent the complex interplay in the pathological mechanisms behind the disease. These genes could represent potential targets for the development of peripheral biomarkers underlying illness traits in clinical remission stages after a first episode of schizophrenia