401 research outputs found

    Evento de mortalidad en masa de 2018 en la gorgonia blanca Eunicella singularis: evaluación de la técnica de poda de ramas muertas como herramienta de gestión para su conservación.

    Get PDF
    Las gorgonias son organismos filtradores bentónicos que ejercen un papel clave como especies ingenieras en el mar Mediterráneo. En las últimas décadas, el aumento de episodios climáticos extremos ha provocado diversos eventos de mortalidad en masa. A principios de otoño de 2018 se observó cómo una prolongación de las condiciones estivales debida a la elevada temperatura provocó un evento de mortalidad de las poblaciones de las gorgonias del Parc Natural de El Montgrí, les Illes Medes i el Baix Ter (noroeste del Mediterráneo), y el presente trabajo estudió los efectos de este evento en las poblaciones de la gorgonia blanca Eunicella singularis. Además, la instalación de parcelas fijas permitió examinar los resultados de la aplicación de una innovadora herramienta de gestión de las poblaciones de gorgonias: la poda de ramas muertas. Los resultados obtenidos mostraron cómo este evento de mortalidad afectó gravemente al estado de conservación y la producción gonadal de las poblaciones estudiadas. Los resultados de la técnica de poda mostraron cómo la actuación de poda favorece la supervivencia de las colonias contribuyendo a reducir significativamente la mortalidad parcial al cabo de 1 año. Sin embargo, la poda de ramas muertas no consiguió mejorar la producción gonadal de las colonias del primer ciclo reproductivo después del evento de mortalidad, posiblemente porque la producción gonadal se ve reducida durante un periodo de tiempo más largo al de la duración de este estudio, debido a la inversión prioritaria de los recursos energéticos en la regeneración del tejido vivo perdido después de un evento de mortalidad en masa para favorecer su supervivencia. Futuros estudios a largo plazo permitirán elucidar los beneficios del uso de la técnica de poda para la gestión de los bosques de gorgonias.Gorgonians are benthic suspension feeders that play a key role as engineering species in hard-bottom substrates in the Mediterranean Sea. During the last decades, extreme weather episodes have increased in frequency and intensity leading to mass mortality events. In autumn 2018, it was observed that the prolonged high-water temperature conditions during summer led to a mass mortality event of the gorgonian populations in the Natural Park El Montgrí, les Illes Medes i el Baix Ter (north-western Mediterranean). The present work studied the effects of this event on the populations of the white gorgonian Eunicella singularis. Moreover, by means of installing permanent plots, it was possible to assess the innovative technique of pruning dead branches on gorgonians oriented to improve their management and preservation. The results showed how this mortality event severely affected the preservation status and gonadal production of the studied population. Besides, the results of the pruning technique revealed how pruning helped to the preservation of the colonies by reducing partial mortality at the end of the experiment, 1 year later. Nevertheless, the pruning technique of dead branches failed to improve gonadal production of colonies at the first reproductive cycle after pruning, probably because gonadal production is reduced over a longer time period than the duration of this study, due to the priority of reallocation of energetic resources to regenerate lost tissues after a mass mortality event in order to favor colony survivorship. Future longterm studies may demonstrate the possible benefits of the use of the pruning technique for the management the gorgonian forests

    Determinación del número óptimo de sensores y su localización para la detección de defectos en estructuras

    Get PDF
    La detección de daños en estructuras es un reto para la ingeniería. Hasta ahora en el sector aeronáutico la metodología a seguir era llevar a cabo mantenimientos preventivos periódicos para la detección de estos daños. Algunos daños son perceptibles mediante una simple inspección visual, pero otros requieren desmontar partes de la aeronave y ser analizada mediante ensayos de detección no destructivos (NDT). Esto supone un alto coste económico, ya que, a parte del propio coste de estas inspecciones, se le tiene que sumar el tiempo que la aeronave está inoperativa. Algunos defectos son difíciles de detectar y una vez son detectados ya pueden haber causado un daño severo en la estructura. Para conseguir detectar estos fallos en sus primeros estados y además reducir o eliminar el tiempo de que la nave esté fuera de servicio, se están implementando una red de sensores para monitorizar la salud de la estructura en tiempo real. Estos sistemas de monitorización y detección de defectos en estructuras, es conocido como SHMS por sus siglas en inglés Structural Health Monitoring Systems. Para implementar esta red de sensores en la estructura, es importante determinar el número de sensores y la localización de éstos para detectar cualquier daño en la estructura. Una buena optimización de la red de sensores permite detectar cualquier fallo en la estructura y además reducir costes tanto en la instalación de los sensores como en el equipamiento para procesar los datos. Un alto número de sensores daría un conjunto de datos demasiado grande, que tendría un gran coste computacional que repercute en el tiempo de procesamiento de los datos y los requerimientos del equipo. En el presente proyecto se propone e implemente una metodología para determinar qué sensores son los que nos dan más información para después mediante pruebas poder determinar si esta metodología funciona. Este método se basa en hacer uso de un método de reducción de dimensiones y calcular ciertos índices estadísticos, para después calcular las contribuciones de cada sensor a estos índices. Con las contribuciones tenemos un criterio de selección para determinar qué sensores son más importantes y finalmente mediante un algoritmo de clasificación se valida si esta nueva metodología es efectiva.La detecció de defectes en estructures és un repte per l’enginyeria. Fins ara en el sector aeronàutic la metodologia a seguir era portar a terme manteniments preventius periòdicament per la detecció d’aquests defectes. Alguns defectes són perceptibles mitjançant una simple inspecció visual, però d’ altres requereixen desmuntar part de l’aeronau i ser analitzada mitjançant assajos de detecció no destructius (NDT). Això suposa un alt cost econòmic, ja que, a part de propi cost d’aquestes inspeccions, s’ha de sumar el temps que l’aeronau està inoperativa. Alguns defectes són difícils de detectar i una vegada son detectats ja poden haver causat un dany sever a l’estructura. Per aconseguir detectar aquests defectes en els seus primers estats i a més reduir o eliminar el temps que l’aeronau està inoperativa, s’està implementant una xarxa de sensors per monitoritzar la salut de l’estructura en temps real. Aquests sistemes de monitorització i detecció de defectes en estructures, són coneguts com SHS per les seves sigles en anglès Structural Health Monitoring Systems. Per implementar aquesta xarxa de sensors a l’estructura és important determinar el nombre de sensors i la localització d’aquests per detectar qualssevol defecte a l’estructura. Una bona optimització de la xarxa de sensors permet detectar qualssevol defecte a l’estructura i a més reduir costos tant en la instal·lació dels sensors com en l’equipament per a processar les dades. Un alt nombre de sensors donaria un conjunt de dades massa gran, que tindria un gran cost computacional que repercutiria en el temps de processament d’aquestes dades i els requeriments de l’equip. En el present projecte es proposa i s’implementa una metodologia per determinar quins sensors son els que ens donen més informació per després mitjançant probes poder determinar si aquesta metodologia funciona. Aquest mètode es basa en fer ús d’un mètode de reducció de dimensions i calcular uns índexs estadístics per després calcular les contribucions de cada sensor a aquests índexs estadístics. Amb les contribucions tindrem un criteri de selecció per determinar quins sensors són els més importants i així, finalment, mitjançant un algoritme de classificació validar si aquest mètode proposat és efectiu.The detection of damage in structures is a challenge for engineering. Until now, in the aeronautical sector, the methodology to follow was to carry out periodic preventive maintenance to detect these damages. Some damage is perceptible by simple visual inspection, but others require disassembling parts of the aircraft and being analyzed by non-destructive detection testing (NDT). This implies a high economic cost, since, apart from the cost of these inspections, the time that the aircraft is inoperative must be added. Some defects are difficult to detect and once detected they may already have caused severe damage to the structure. In order to detect these failures in their early stages and also reduce or eliminate the time the ship is out of service, a network of sensors is being implemented to monitor the health of the structure in real time. These systems for monitoring and detecting defects in structures are known as SHMS for its acronym Structural Health Monitoring Systems. To implement this sensor network in the structure, it is important to determine the number of sensors and their location to detect any damage to the structure. A good optimization of the sensor network allows detecting any failure in the structure and also reduces costs both in the installation of the sensors and in the equipment to process the data. A high number of sensors would give a data set that is too large, which would have a large computational cost that affects the data processing time and equipment requirements. In the present project, a methodology is proposed and implemented to determine which sensors are the ones that give us more information so that later, through tests, we can determine if this methodology works. This method is based on making use of a dimension reduction method and calculating certain statistical parameters, to later calculate the contributions of each sensor to these parameters. With the contributions we have a selection criteria to determine which sensors are most important and finally, through a classification algorithm, it is validated if this new methodology is effective

    Tuning the endocytosis mechanism of Zr-based metal−organic frameworks through linker functionalization

    Get PDF
    A critical bottleneck for the use of metal-organic frameworks (MOFs) as drug delivery systems has been allowing them to reach their intracellular targets without being degraded in the acidic environment of the lysosomes. Cells take up particles by endocytosis through multiple biochemical pathways, and the fate of these particles depends on these routes of entry. Here, we show the effect of functional group incorporation into a series of Zr-based MOFs on their endocytosis mechanisms, allowing us to design an effi-cient drug delivery system. In particular, naphthalene-2,6-dicarboxylic acid and 4,4'-biphenyldicarboxylic acid ligands promote entry through the caveolin-pathway, allowing the particles to avoid lysosomal degradation and be delivered into the cytosol, en-hancing their therapeutic activity when loaded with drugs

    Cost analysis of the development and implementation of a spatial decision support system for malaria elimination in Solomon Islands

    No full text
    BACKGROUND The goal of malaria elimination faces numerous challenges. New tools are required to support the scale up of interventions and improve national malaria programme capacity to conduct detailed surveillance. This study investigates the cost factors influencing the development and implementation of a spatial decision support system (SDSS) for malaria elimination in the two elimination provinces of Isabel and Temotu, Solomon Islands. METHOD Financial and economic costs to develop and implement a SDSS were estimated using the Solomon Islands programme's financial records. Using an ingredients approach, verified by stakeholders and operational reports, total costs for each province were quantified. A budget impact sensitivity analysis was conducted to investigate the influence of variations in standard budgetary components on the costs and to identify potential cost savings. RESULTS A total investment of US96,046(2012constantdollars)wasrequiredtodevelopandimplementtheSDSSintwoprovinces(TemotuProvinceUS 96,046 (2012 constant dollars) was required to develop and implement the SDSS in two provinces (Temotu Province US 49,806 and Isabel Province US46,240).ThesinglelargestexpensecategorywasforcomputerizedequipmenttotallingapproximatelyUS 46,240). The single largest expense category was for computerized equipment totalling approximately US 30,085. Geographical reconnaissance was the most expensive phase of development and implementation, accounting for approximately 62% of total costs. Sensitivity analysis identified different cost factors between the provinces. Reduced equipment costs would deliver a budget saving of approximately 10% in Isabel Province. Combined travel costs represented the greatest influence on the total budget in the more remote Temotu Province. CONCLUSION This study provides the first cost analysis of an operational surveillance tool used specifically for malaria elimination in the South-West Pacific. It is demonstrated that the costs of such a decision support system are driven by specialized equipment and travel expenses. Such factors should be closely scrutinized in future programme budgets to ensure maximum efficiencies are gained and available resources are allocated effectively

    Assessment of CNT-doping and hot-wet storage aging effects on Mode I, II and I/II interlaminar fracture toughness of a UD Graphite/Epoxy material system

    Get PDF
    The interlaminar fracture toughness of two unidirectional Graphite/Epoxy composite material systems has been experimentally assessed. The systems studied were prepreg composite and prepreg composite treated with carbon nanotubes (CNT). The fracture toughness has been quantified in Mode I, Mode II and Mode I/II by performing DCB, ENF and MMB tests according to relevant ISO and ASTM standards. The effect of aging by storage under hot-wet conditions has been quantified by studying these systems at room temperature without aging and at 70 °C after aging treatment. Experimental data are reported in a 3- or 5-specimen batch mode, indicating non-linear behavior and sensitivity to imperfections in coupons alignment and load application. Moreover, intermediate variables required for the estimation of fracture toughness are presented in order to be used as a reference guide for principal fracture test data evaluation. In the case of the RT systems, measured data have been compared with analytical solutions and finite element model predictions yielding good correlation for DCB and ENF tests and considerable deviation in the case of MMB tests. Main findings include that CNT-doping leads to an increase of fracture toughness in all modes, especially in Mode II, and that aging leads to less variation in measurements for both systems, indicating a more uniform matrix response.The current work has received funding from EU Horizon 2020 Clean Sky II project SHERLOC (Structural Health Monitoring, Manufacturing and Repair Technologies for Life Management of Composite Fuselage) under Grant Agreement No CS2-AIR-GAM-2014-2015-01. The authors from HAI would like to thank our ex-colleagues Dimitrios Habas and Stavros Kalogeropoulos for their major assistance with coupons fabrication and experimental work, respectively.Peer ReviewedPostprint (author's final draft

    Constitutive androstane receptor 1 is constitutively bound to chromatin and ‘primed’ for transactivation in hepatocytes

    Get PDF
    The constitutive androstane receptor (CAR) is a xenobiotic sensor expressed in hepatocytes that activates genes involved in drug metabolism, lipid homeostasis, and cell proliferation. Much progress has been made in understanding the mechanism of activation of human CAR by drugs and xenobiotics. However, many aspects of the activation pathway remain to be elucidated. In this report, we have used viral constructs to express human CAR, its splice variants, and mutant CAR forms in hepatocytes from Car-/- mice in vitro and in vivo. We demonstrate CAR expression rescued the ability of Car-/- hepatocytes to respond to a wide range of CAR activators including phenobarbital. Additionally, two major splice isoforms of human CAR, CAR2 and CAR3, were inactive with almost all the agents tested. In contrast to the current model of CAR activation, ectopic CAR1 is constitutively localised in the nucleus and is loaded onto Cyp2b10 gene in the absence of an inducing agent. In studies to elucidate the role of threonine T38 in CAR regulation, we found that the T38D mutant was inactive even in the presence of CAR activators. However, the T38A mutant was activated by CAR inducers, showing that T38 is not essential for CAR activation. Also, using the inhibitor erlotinib, we could not confirm a role for the epidermal growth factor receptor in CAR regulation. Our data suggest that CAR is constitutively bound to gene regulatory regions and is regulated by exogenous agents through a mechanism which involves protein phosphorylation in the nucleus

    Is computational oceanography coming of age?

    Get PDF
    Computational oceanography is the study of ocean phenomena by numerical simulation, especially dynamical and physical phenomena. Progress in information technology has driven exponential growth in the number of global ocean observations and the fidelity of numerical simulations of the ocean in the past few decades. The growth has been exponentially faster for ocean simulations, however. We argue that this faster growth is shifting the importance of field measurements and numerical simulations for oceanographic research. It is leading to the maturation of computational oceanography as a branch of marine science on par with observational oceanography. One implication is that ultraresolved ocean simulations are only loosely constrained by observations. Another implication is that barriers to analyzing the output of such simulations should be removed. Although some specific limits and challenges exist, many opportunities are identified for the future of computational oceanography. Most important is the prospect of hybrid computational and observational approaches to advance understanding of the ocean
    corecore