2,198 research outputs found
The 19-Vertex Model at critical regime
We study the 19-vertex model associated with the quantum group
at critical regime . We give the realizations of the
type-I vertex operators in terms of free bosons and free fermions. Using these
free field realizations, we give the integral representations for the
correlation functions.Comment: LaTEX2e, 19page
The Elliptic Algebra U_{q,p}(sl_N^) and the Deformation of W_N Algebra
After reviewing the recent results on the Drinfeld realization of the face
type elliptic quantum group B_{q,lambda}(sl_N^) by the elliptic algebra
U_{q,p}(sl_N^), we investigate a fusion of the vertex operators of
U_{q,p}(sl_N^). The basic generating functions \Lambda_j(z) (j=1,2,.. N-1) of
the deformed W_N algebra are derived explicitly.Comment: 15 pages, to appear in Journal of physics A special issue - RAQIS0
Fermionic screening operators in the sine-Gordon model
Extending our previous construction in the sine-Gordon model, we show how to
introduce two kinds of fermionic screening operators, in close analogy with
conformal field theory with c<1.Comment: 18 pages, 1 figur
Fusion of the -Vertex Operators and its Application to Solvable Vertex Models
We diagonalize the transfer matrix of the inhomogeneous vertex models of the
6-vertex type in the anti-ferroelectric regime intoducing new types of q-vertex
operators. The special cases of those models were used to diagonalize the s-d
exchange model\cite{W,A,FW1}. New vertex operators are constructed from the
level one vertex operators by the fusion procedure and have the description by
bosons. In order to clarify the particle structure we estabish new isomorphisms
of crystals. The results are very simple and figure out representation
theoretically the ground state degenerations.Comment: 35 page
Integrable Hierarchies and Contact Terms in u-plane Integrals of Topologically Twisted Supersymmetric Gauge Theories
The -plane integrals of topologically twisted supersymmetric gauge
theories generally contain contact terms of nonlocal topological observables.
This paper proposes an interpretation of these contact terms from the point of
view of integrable hierarchies and their Whitham deformations. This is inspired
by Mari\~no and Moore's remark that the blowup formula of the -plane
integral contains a piece that can be interpreted as a single-time tau function
of an integrable hierarchy. This single-time tau function can be extended to a
multi-time version without spoiling the modular invariance of the blowup
formula. The multi-time tau function is comprised of a Gaussian factor
and a theta function. The time variables play the
role of physical coupling constants of 2-observables carried by the
exceptional divisor . The coefficients of the Gaussian part are
identified to be the contact terms of these 2-observables. This identification
is further examined in the language of Whitham equations. All relevant
quantities are written in the form of derivatives of the prepotential.Comment: latex, 17 pages, no figures; final version for publicatio
Hamiltonian Dynamics, Classical R-matrices and Isomonodromic Deformations
The Hamiltonian approach to the theory of dual isomonodromic deformations is
developed within the framework of rational classical R-matrix structures on
loop algebras. Particular solutions to the isomonodromic deformation equations
appearing in the computation of correlation functions in integrable quantum
field theory models are constructed through the Riemann-Hilbert problem method.
The corresponding -functions are shown to be given by the Fredholm
determinant of a special class of integral operators.Comment: LaTeX 13pgs (requires lamuphys.sty). Text of talk given at workshop:
Supersymmetric and Integrable Systems, University of Illinois, Chicago
Circle, June 12-14, 1997. To appear in: Springer Lecture notes in Physic
CFT approach to the -Painlev\'e VI equation
Iorgov, Lisovyy, and Teschner established a connection between isomonodromic
deformation of linear differential equations and Liouville conformal field
theory at . In this paper we present a analog of their construction.
We show that the general solution of the -Painlev\'e VI equation is a ratio
of four tau functions, each of which is given by a combinatorial series arising
in the AGT correspondence. We also propose conjectural bilinear equations for
the tau functions.Comment: 26 page
- …
