11 research outputs found

    Drug-Tolerant Cancer Cells Show Reduced Tumor-Initiating Capacity: Depletion of CD44+ Cells and Evidence for Epigenetic Mechanisms

    Get PDF
    Cancer stem cells (CSCs) possess high tumor-initiating capacity and have been reported to be resistant to therapeutics. Vice versa, therapy-resistant cancer cells seem to manifest CSC phenotypes and properties. It has been generally assumed that drug-resistant cancer cells may all be CSCs although the generality of this assumption is unknown. Here, we chronically treated Du145 prostate cancer cells with etoposide, paclitaxel and some experimental drugs (i.e., staurosporine and 2 paclitaxel analogs), which led to populations of drug-tolerant cells (DTCs). Surprisingly, these DTCs, when implanted either subcutaneously or orthotopically into NOD/SCID mice, exhibited much reduced tumorigenicity or were even non-tumorigenic. Drug-tolerant DLD1 colon cancer cells selected by a similar chronic selection protocol also displayed reduced tumorigenicity whereas drug-tolerant UC14 bladder cancer cells demonstrated either increased or decreased tumor-regenerating capacity. Drug-tolerant Du145 cells demonstrated low proliferative and clonogenic potential and were virtually devoid of CD44+ cells. Prospective knockdown of CD44 in Du145 cells inhibited cell proliferation and tumor regeneration, whereas restoration of CD44 expression in drug-tolerant Du145 cells increased cell proliferation and partially increased tumorigenicity. Interestingly, drug-tolerant Du145 cells showed both increases and decreases in many β€œstemness” genes. Finally, evidence was provided that chronic drug exposure generated DTCs via epigenetic mechanisms involving molecules such as CD44 and KDM5A. Our results thus reveal that 1) not all DTCs are necessarily CSCs; 2) conventional chemotherapeutic drugs such as taxol and etoposide may directly target CD44+ tumor-initiating cells; and 3) DTCs generated via chronic drug selection involve epigenetic mechanisms

    Human pro-Tumor Necrosis Factor Is a Homotrimer

    No full text

    Hyaluronic Acid-Paclitaxel: Antitumor Efficacy against CD44(+) Human Ovarian Carcinoma Xenografts1

    Get PDF
    Numerous human tumor types, including ovarian cancer, display a significant expression of the CD44 family of cell surface proteoglycans. To develop tumor-targeted drugs, we have initially evaluated whether the CD44 ligand hyaluronic acid (HA) could serve as a backbone for paclitaxel (TXL) prodrugs. HA-TXL was prepared by modification of previous techniques. The in vitro cytotoxicity of HA-TXL against the CD44(+) human ovarian carcinoma cell lines SKOV-3ip and NMP-1 could be significantly blocked by preincubation with a molar excess of free HA. Female nude mice bearing intraperitoneal implants of NMP-1 cells were treated intraperitoneally with a single sub-maximum tolerated dose dose of HA-TXL or with multiple-dose regimens of paclitaxel (Taxol; Mead Johnson, Princeton, NJ) to determine the effects of these regimens on host survival and intraperitoneal tumor burden, with the latter being assessed by magnetic resonance imaging. NMP-1 xenografts were highly resistant to Taxol regimens, as host survival was only nominally improved compared to controls (T//C ∼ 120), whereas single-dose HA-TXL treatment significantly improved survival in this model (T//C ∼ 140; P = .004). In both NMP-1 and SKOV-3ip models, MR images of abdomens of HA-TXL-treated mice obtained shortly before controls required humane sacrifice revealed markedly reduced tumor burdens compared to control mice. This study is among the first to demonstrate that HA-based prodrugs administered locoregionally have antitumor activity in vivo
    corecore