10 research outputs found

    A bioinformatic prediction of antigen presentation from SARS-CoV-2 spike protein revealed a theorical correlation of HLA-DRB1*01 with COVID-19 fatality in Mexican population: an ecological approach

    Full text link
    SARS-CoV-2 infection is causing a pandemic disease that is reflected in challenging public health problems worldwide. Human leukocyte antigen (HLA)-based epitope prediction and its association with disease outcomes provide an important base for treatment design. A bioinformatic prediction of T cell epitopes and their restricted HLA Class I and II alleles was performed to obtain immunogenic epitopes and HLA alleles from the spike protein of the severe acute respiratory syndrome coronavirus 2 virus. Also, a correlation with the predicted fatality rate of hospitalized patients in 28 states of Mexico was done. Here, we describe a set of 10 highly immunogenic epitopes, together with different HLA alleles that can efficiently present these epitopes to T cells. Most of these epitopes are located within the S1 subunit of the spike protein, suggesting that this area is highly immunogenic. A statistical negative correlation was found between the frequency of HLA-DRB1*01 and the fatality rate in hospitalized patients in Mexico

    Iberian Paleoflora and Paleovegetation. Vol. III: Holocene

    Full text link
    International audienc

    Filamentous Fungi for Production of Food Additives and Processing Aids

    Full text link

    Safety of hospital discharge before return of bowel function after elective colorectal surgery

    Full text link
    © 2020 BJS Society Ltd Published by John Wiley & Sons LtdBackground: Ileus is common after colorectal surgery and is associated with an increased risk of postoperative complications. Identifying features of normal bowel recovery and the appropriateness for hospital discharge is challenging. This study explored the safety of hospital discharge before the return of bowel function. Methods: A prospective, multicentre cohort study was undertaken across an international collaborative network. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The main outcome of interest was readmission to hospital within 30 days of surgery. The impact of discharge timing according to the return of bowel function was explored using multivariable regression analysis. Other outcomes were postoperative complications within 30 days of surgery, measured using the Clavien–Dindo classification system. Results: A total of 3288 patients were included in the analysis, of whom 301 (9·2 per cent) were discharged before the return of bowel function. The median duration of hospital stay for patients discharged before and after return of bowel function was 5 (i.q.r. 4–7) and 7 (6–8) days respectively (P < 0·001). There were no significant differences in rates of readmission between these groups (6·6 versus 8·0 per cent; P = 0·499), and this remained the case after multivariable adjustment for baseline differences (odds ratio 0·90, 95 per cent c.i. 0·55 to 1·46; P = 0·659). Rates of postoperative complications were also similar in those discharged before versus after return of bowel function (minor: 34·7 versus 39·5 per cent; major 3·3 versus 3·4 per cent; P = 0·110). Conclusion: Discharge before return of bowel function after elective colorectal surgery appears to be safe in appropriately selected patients

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    Full text link
    The structure of the CMS inner tracking system has been studied using nuclear interactions of hadrons striking its material. Data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded in 2015 at the LHC are used to reconstruct millions of secondary vertices from these nuclear interactions. Precise positions of the beam pipe and the inner tracking system elements, such as the pixel detector support tube, and barrel pixel detector inner shield and support rails, are determined using these vertices. These measurements are important for detector simulations, detector upgrades, and to identify any changes in the positions of inactive elements

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    Full text link
    The structure of the CMS inner tracking system has been studied using nuclear interactions of hadrons striking its material. Data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded in 2015 at the LHC are used to reconstruct millions of secondary vertices from these nuclear interactions. Precise positions of the beam pipe and the inner tracking system elements, such as the pixel detector support tube, and barrel pixel detector inner shield and support rails, are determined using these vertices. These measurements are important for detector simulations, detector upgrades, and to identify any changes in the positions of inactive elements
    corecore