328 research outputs found

    Contenido de metales pesados en abonos orgánicos, sustratos y plantas cultivadas en organopónicos: Heavy metals content in organic manures, substrates and plants cultivated in organoponics.

    Get PDF
    La utilización de abonos orgánicos (AO) de diversos orígenes, como los compost obtenidos a partir de residuales sólidos urbanos (RSU), en organopónicos de la agricultura urbana, es una alternativa para la producción de alimentos conbajos insumos. Para el uso de estos productos, se requiere una evaluación sistemática de sus contenidos en metales pesados (MP), porque pueden acumularse en los suelos y sustratos, alterar el equilibrio biológico de los mismos y afectar al rendimiento de los cultivos y la salud animal, inclusive la del hombre. Se evaluó la metodología analítica de mayor exactitud y porcentaje de recobrado en la determinación de Cadmio (Cd), Plomo (Pb) y Níquel (Ni) y se empleó para el estudio del contenido de estos MP en AO y sustratos así como su efecto en las hortalizas que se producen en organopónicos de La Habana y Guantánamo. Se encontró que los compost obtenidos a partir de los RSU provenientes de la basura doméstica extraída de los vertederos sin previa clasificación y los substratos preparados a partir de estos, presentan contenidos de MP, especialmente Cd y Pb, por encima de los límites máximos permisibles (LMP), por lo que no deben ser empleados para l

    The ALHAMBRA survey: Accurate merger fractions by PDF analysis of photometric close pairs

    Full text link
    Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger fractions and rates from the ALHAMBRA survey are in excellent agreement with those from spectroscopic work, both for the general population and for red and blue galaxies. With the merger rate of bright (M_B <= -20 - 1.1z) galaxies evolving as (1+z)^n, the power-law index n is larger for blue galaxies (n = 2.7 +- 0.5) than for red galaxies (n = 1.3 +- 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is N_m = 0.57 +- 0.05 for red galaxies and N_m = 0.26 +- 0.02 for blue galaxies. Our new methodology exploits statistically all the available information provided by photometric redshift codes and provides accurate measurements of the merger fraction by close pairs only using photometric redshifts. Current and future photometric surveys will benefit of this new methodology.Comment: Submitted to A&A, 15 pages, 15 figures, 6 tables. Comments are welcome. Close pair systems available at https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs

    The ALHAMBRA Survey: Bayesian Photometric Redshifts with 23 bands for 3 squared degrees

    Full text link
    The ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical) survey has observed 8 different regions of the sky, including sections of the COSMOS, DEEP2, ELAIS, GOODS-N, SDSS and Groth fields using a new photometric system with 20 contiguous ~ 300A˚300\AA filters covering the optical range, combining them with deep JHKsJHKs imaging. The observations, carried out with the Calar Alto 3.5m telescope using the wide field (0.25 sq. deg FOV) optical camera LAICA and the NIR instrument Omega-2000, correspond to ~700hrs on-target science images. The photometric system was designed to maximize the effective depth of the survey in terms of accurate spectral-type and photo-zs estimation along with the capability of identification of relatively faint emission lines. Here we present multicolor photometry and photo-zs for ~438k galaxies, detected in synthetic F814W images, complete down to I~24.5 AB, taking into account realistic noise estimates, and correcting by PSF and aperture effects with the ColorPro software. The photometric ZP have been calibrated using stellar transformation equations and refined internally, using a new technique based on the highly robust photometric redshifts measured for emission line galaxies. We calculate photometric redshifts with the BPZ2 code, which includes new empirically calibrated templates and priors. Our photo-zs have a precision of dz/(1+zs)=1dz/(1+z_s)=1% for I<22.5 and 1.4% for 22.5<I<24.5. Precisions of less than 0.5% are reached for the brighter spectroscopic sample, showing the potential of medium-band photometric surveys. The global P(z)P(z) shows a mean redshift =0.56 for I=0.86 for I<24.5 AB. The data presented here covers an effective area of 2.79 sq. deg, split into 14 strips of 58.5'x15.5' and represents ~32 hrs of on-target.Comment: The catalog data and a full resolution version of this paper is available at https://cloud.iaa.csic.es/alhambra

    The functional trait spectrum of European temperate grasslands

    Get PDF
    Questions: What is the functional trait variation of European temperate grasslands and how does this reflect global patterns of plant form and function? Do habitat specialists show trait differentiation across habitat types?. Location: Europe. Methods: We compiled 18 regeneration and non-regeneration traits for a continental species pool consisting of 645 species frequent in five grassland types. These grassland types are widely distributed in Europe but differentiated by altitude, soil bedrock and traditional long-term management and disturbance regimes. We evaluated the multivariate trait space of this entire species pool and compared multi-trait variation and mean trait values of habitat specialists grouped by grassland type. Results: The first dimension of the trait space accounted for 23% of variation and reflected a gradient between fast-growing and slow-growing plants. Plant height and SLA contributed to both the first and second ordination axes. Regeneration traits mainly contributed to the second and following dimensions to explain 56% of variation across the first five axes. Habitat specialists showed functional differences between grassland types mainly through non-regeneration traits. Conclusions: The trait spectrum of plants dominating European temperate grasslands is primarily explained by growth strategies which are analogous to the trait variation observed at the global scale, and secondly by regeneration strategies. Functional differentiation of habitat specialists across grassland types is mainly related to environmental filtering linked with altitude and disturbance. This filtering pattern is mainly observed in non-regeneration traits, while most regeneration traits demonstrate multiple strategies within the same habitat type.EL, BJA, MTI, AM, PI and CB acknowledge the research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007–2013 under REA grant agreement no. 607785, as a part of the NAtive Seed Science TEchnology and Conservation (NASSTEC) Initial Training Network (ITN). BJA was further funded by the Marie Curie Clarín‐COFUND program of the Principality of Asturias and the European Union (ACB17‐26). BJA and HB acknowledge support from the German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig funded by the German Research Foundation (DFTG FZT 118) through the sPlot research platform. PI acknowledges support from the Rural & Environment Science & Analytical Services Division of the Scottish Government. KÖ thanks RO1567‐IBB03/2018 for financial support

    Global patterns and drivers of alpine plant species richness

    Get PDF
    Aim Alpine ecosystems differ in area, macroenvironment and biogeographical history across the Earth, but the relationship between these factors and plant species richness is still unexplored. Here, we assess the global patterns of plant species richness in alpine ecosystems and their association with environmental, geographical and historical factors at regional and community scales. Location Global. Time period Data collected between 1923 and 2019. Major taxa studied Vascular plants. Methods We used a dataset representative of global alpine vegetation, consisting of 8,928 plots sampled within 26 ecoregions and six biogeographical realms, to estimate regional richness using sample‐based rarefaction and extrapolation. Then, we evaluated latitudinal patterns of regional and community richness with generalized additive models. Using environmental, geographical and historical predictors from global raster layers, we modelled regional and community richness in a mixed‐effect modelling framework. Results The latitudinal pattern of regional richness peaked around the equator and at mid‐latitudes, in response to current and past alpine area, isolation and the variation in soil pH among regions. At the community level, species richness peaked at mid‐latitudes of the Northern Hemisphere, despite a considerable within‐region variation. Community richness was related to macroclimate and historical predictors, with strong effects of other spatially structured factors. Main conclusions In contrast to the well‐known latitudinal diversity gradient, the alpine plant species richness of some temperate regions in Eurasia was comparable to that of hyperdiverse tropical ecosystems, such as the páramo. The species richness of these putative hotspot regions is explained mainly by the extent of alpine area and their glacial history, whereas community richness depends on local environmental factors. Our results highlight hotspots of species richness at mid‐latitudes, indicating that the diversity of alpine plants is linked to regional idiosyncrasies and to the historical prevalence of alpine ecosystems, rather than current macroclimatic gradients

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore