16 research outputs found

    Optimal Operation of Network-Connected Combined Heat and Powers for Customer Profit Maximization

    No full text
    Network-connected combined heat and powers (CHPs), owned by a community, can export surplus heat and electricity to corresponding heat and electric networks after community loads are satisfied. This paper proposes a new optimization model for network-connected CHP operation. Both CHPs’ overall efficiency and heat to electricity ratio (HTER) are assumed to vary with loading levels. Based on different energy flow scenarios where heat and electricity are exported to the network from the community or imported, four profit models are established accordingly. They reflect the different relationships between CHP energy supply and community load demand across time. A discrete optimization model is then developed to maximize the profit for the community. The models are derived from the intervals determined by the daily operation modes of CHP and real-time buying and selling prices of heat, electricity and natural gas. By demonstrating the proposed models on a 1 MW network-connected CHP, results show that the community profits are maximized in energy markets. Thus, the proposed optimization approach can help customers to devise optimal CHP operating strategies for maximizing benefits

    Curcumin encapsulation and protection based on lysozyme nanoparticles

    No full text
    Curcumin possesses antioxidant, anti‐inflammatory, and other properties. However, this compound exhibits low bioavailability because of its poor solubility and stability. In this paper, lysozyme nanoparticles were fabricated through solvent evaporation, and then, the solubilization and protection capability of curcumin were investigated. Lysozyme nanoparticles were characterized by dynamic light scattering technique, atomic force microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The load capacity and stability in thermal environment were further explored. Results showed that the lysozyme nanoparticle displayed a spherical structure (127.9 ± 2.12 nm) with favorable distribution. The solubility of curcumin can increase to 22 ÎŒg/mL. After encapsulation by lysozyme nanoparticles, the retentive curcumin can reach up to 67.9% and 30.25% at 25°C and 50°C, respectively, significantly higher than that of free curcumin. Meanwhile, experiments on DPPH free radicals indicated the curcumin loaded by lysozyme nanoparticle possessed higher free radical scavenging activity than that of free curcumin with same treatments. The results confirmed that lysozyme nanoparticles exhibit potential applications in solubilizing and protecting the environment‐sensitive hydrophobic functional components

    Analysis of the influence of the grounding method on the measurement of direct current total electric field on a civil housing platform

    No full text
    Abstract Buildings near direct current transmission lines are sensitive to the electromagnetic environment, and the measurement of the electric field above them is important in engineering design and environmental assessment in China. The models of buildings and probes in the ion flow field were established to explore the accurate measurement method of the electric field above the building. Based on the upstream finite element method and the predictor–corrector method, the influence of whether the probe was grounded or not above the building was studied. On this basis, simulation experiments and real‐type experiments were carried out. The results show that when the electrical conductivity of the building was greater than 10−10 S/m, being grounded or not would not change the results. When the building conductivity was between 10−11 and 10−12 S/m, the electric field measurement results would be increased by 30% to 120% after grounding. In the real‐type experiments on the platform with a plywood roof, the relative error in the electric field when grounded or not was only 2.6%. This proved the reliability of the calculated results. In this paper, the measuring method of the DC space charge‐modified electric field above buildings was analyzed first, and the conclusion that ground wire can be cancelled above buildings with general materials was presented. The research results can provide a technical basis for the accurate measurement of the electric field above the buildings near DC transmission lines

    Research on the Springback Behavior of 316LN Stainless Steel in Micro-Scale Bending Processes

    No full text
    Hydrogen fuel cells have been used worldwide due to their high energy density and zero emissions. The metallic bipolar plate is the crucial component and has a significant effect on a cell’s efficiency. However, the springback behavior of the metallic bipolar plate will greatly influence its forming accuracy in the micro-scale sheet metal forming process. Therefore, accurate calculation of the springback angle of the micro-scale metallic bipolar plate is urgent but difficult given the state of existing elastoplastic theory. In this paper, a constitutive model that simultaneously considers grain size effect and strain gradient is proposed to analyze micro-scale bending behavior and calculate springback angles. The specialized micro-scale four-point bending tool was designed to better calculate the springback angle and simplify the calculation step. A pure micro-bending experiment on a 316LN stainless steel sheet with a thickness of 0.1 mm was conducted to verify the constitutive model’s accuracy

    Curcumin encapsulation and protection based on lysozyme nanoparticles

    No full text
    Curcumin possesses antioxidant, anti‐inflammatory, and other properties. However, this compound exhibits low bioavailability because of its poor solubility and stability. In this paper, lysozyme nanoparticles were fabricated through solvent evaporation, and then, the solubilization and protection capability of curcumin were investigated. Lysozyme nanoparticles were characterized by dynamic light scattering technique, atomic force microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The load capacity and stability in thermal environment were further explored. Results showed that the lysozyme nanoparticle displayed a spherical structure (127.9 ± 2.12 nm) with favorable distribution. The solubility of curcumin can increase to 22 ÎŒg/mL. After encapsulation by lysozyme nanoparticles, the retentive curcumin can reach up to 67.9% and 30.25% at 25°C and 50°C, respectively, significantly higher than that of free curcumin. Meanwhile, experiments on DPPH free radicals indicated the curcumin loaded by lysozyme nanoparticle possessed higher free radical scavenging activity than that of free curcumin with same treatments. The results confirmed that lysozyme nanoparticles exhibit potential applications in solubilizing and protecting the environment‐sensitive hydrophobic functional components

    Removal of Cr 6+

    No full text

    Anaerobic Co-Digestion of Food Waste and Microalgae at Variable Mixing Ratios: Enhanced Performance, Kinetic Analysis, and Microbial Community Dynamics Investigation

    No full text
    There is an urgent need for clean recycling strategies to address the increase in food waste (FW) and the harvesting of microalgae (MA). In this study, biogas production potential and operational stability were evaluated by testing combinations of FW and MA mixed at five different ratios. Co-digestion of FW and MA improved substrate biodegradability, achieving a decomposition rate of 0.45/d (FW/MA = 1:1), which is 1.25 to 1.55 times higher than that of MA or FW alone. Co-digestion of FW and MA resulted in a synergistic effect, improving biogas yield by 2.04–26.86%. Four mathematical models were applied to estimate biological degradation and biogas production kinetics, and the Cone model performed better than the other models in terms of reliability and accuracy. The abundance of Bacteroidetes, Firmicutes, and Synergistetes peaked at FW/MA = 1:1. At the same ratio, the genera Methanospirillum, Methanocorpusculum, and Methanomethylovorans were also found to have increased in abundance. The optimal ratio was found to be 1:1 for co-digestion of FW and MA, which is a feasible approach for simultaneous bioenergy production and biomass waste co-disposal

    Willingness to receive SARS-CoV-2 vaccine among healthcare workers in public institutions of Zhejiang Province, China

    No full text
    This study aims to investigate healthcare workers’ (HCWs) willingness to receive SARS-CoV-2 vaccine in Zhejiang and to discover the related influential factors. The survey was conducted in six regions of Zhejiang Province, China, and 13 hospitals and 12 Centers for Disease Control and Prevention (CDC) were incorporated into the survey research. Participants were healthcare workers and a total of 3726 questionnaires were collected online, of which 3634 (97.53%) were analyzed. The relationships between the factors and the willingness to get vaccinated against COVID-19 were computed as odds ratios (ORs) by means of multi-factor non-conditional logistic regression analysis. Of the 3634 participants, 2874 (79.09%) HCWs expressed their willingness to get vaccinated if the SARS-CoV-2 vaccine becomes available. Respondents who were younger than 50 years (OR = 1.502, 95% CI: 1.047–2.154), those who believed that they were somewhat likely (OR = 1.658, 95% CI: 1.297–2.120) or likely (OR = 1.893, 95% CI: 1.334–2.684) to get infected by SARS-COV-2 and those with a positive attitude toward the SARS-CoV-2 vaccine were more willing to get vaccinated. Furthermore, compared to doctors, nurses were more reluctant to get vaccinated. In addition, it was found that higher the education level, lower the willingness to get vaccinated. This study revealed that HCWs in Zhejiang Province had a high willingness to get vaccinated. Awareness about the vaccine’s effectiveness and safety and the disease severity should be promoted among HCWs over 50 years of age and nurses to increase the willingness to get vaccinated

    2,4‐Dihydroxybenzoic Acid, a Novel SA Derivative, Controls Plant Immunity via UGT95B17‐Mediated Glucosylation: A Case Study in Camellia Sinensis

    No full text
    Abstract The plant hormone salicylic acid (SA) plays critical roles in plant innate immunity. Several SA derivatives and associated modification are identified, whereas the range and modes of action of SA‐related metabolites remain elusive. Here, the study discovered 2,4‐dihydroxybenzoic acid (2,4‐DHBA) and its glycosylated form as native SA derivatives in plants whose accumulation is largely induced by SA application and Ps. camelliae‐sinensis (Pcs) infection. CsSH1, a 4/5‐hydroxylase, catalyzes the hydroxylation of SA to 2,4‐DHBA, and UDP‐glucosyltransferase UGT95B17 catalyzes the formation of 2,4‐DHBA glucoside. Down‐regulation reduced the accumulation of 2,4‐DHBA glucosides and enhanced the sensitivity of tea plants to Pcs. Conversely, overexpression of UGT95B17 increased plant disease resistance. The exogenous application of 2,4‐DHBA and 2,5‐DHBA, as well as the accumulation of DHBA and plant resistance comparison, indicate that 2,4‐DHBA functions as a potentially bioactive molecule and is stored mainly as a glucose conjugate in tea plants, differs from the mechanism described in Arabidopsis. When 2,4‐DHBA is applied exogenously, UGT95B17‐silenced tea plants accumulated more 2,4‐DHBA than SA and showed induced resistance to Pcs infection. These results indicate that 2,4‐DHBA glucosylation positively regulates disease resistance and highlight the role of 2,4‐DHBA as potentially bioactive molecule in the establishment of basal resistance in tea plants
    corecore