68 research outputs found
Lossless voltage regulation and control of the resonant switched-capacitor DC-DC converter
AbstractâThis paper presents an approach for nom-inally lossless regulation of the output voltage, and for design of tight closed-loop voltage control of a resonant switched-capacitor (ResSC) dc-dc converter. A switching pattern for the ResSC dc-dc converter that enables wide range lossless voltage regulation and zero voltage switching (ZVS) is developed. An appropriate small signal model is derived based on the generalized averaging method. In view of the dynamics of the developed small signal transfer functions, a compensation method based on a minor phase loop is introduced to stabilize the system. The steady state and transient responses of the system are evaluated based on the developed model. The performance of the proposed controller is verified by a switch-based simulation in a design example for on-chip power delivery application. I
Entire Peroxidation Reaction System of Myeloperoxidase Correlates with Progressive Low-Density Lipoprotein Modifications via Reactive Aldehydes in Atherosclerotic Patients with Hypertension
Background/Aims: Reactive oxygen species (ROS) contribute to the dysfunction of serum lipoproteins, which triggers lipid metabolism abnormalities in the development of atherosclerosis and hypertension. Myeloperoxidase (MPO) is involved in ROS modifications, triggering lipid peroxidation and aldehyde formation. However, the relationship between the entirety of the MPO reaction system and oxidative modification of serum lipoproteins in atherosclerotic patients with hypertension remains unclear. Methods: We measured MPO activity (peroxidation and chlorination), 4-hydroxynonenal-modified low-density lipoprotein (HNE-LDL), malondialdehyde-modified low-density lipoprotein (MDA-LDL), H2O2, reduced glutathione (GSH), and oxidized glutathione (GSSG) using a corresponding commercial kit in atherosclerotic patients with hypertension and healthy participants. We used Spearmanâs correlation analysis to investigate the correlation between MPO activity and the levels of these oxidative and anti-oxidative stress-related indices and performed response surface regression to investigate the relationship between the MPO reaction system and the levels of HNE-LDL, MDA-LDL, and the GSH/GSSG ratio. Results: Our results showed no association between the levels of MPO peroxidation activity, MPO chlorination activity, H2O2, and Cl- and those of HNE-LDL, MDA-LDL, GSH, and GSSG, and the GSH/GSSG ratio in healthy participants. In addition, no effects of the peroxidation reaction system of MPO (PRSM) and the chlorination reaction system of MPO (CRSM) on GSH/GSSG were found in this investigation. However, we found that the PRSM rather than the CRSM correlated with progressive low-density lipoprotein (LDL) modifications by HNE-LDL and MDA-LDL in atherosclerotic patients with hypertension. Conclusion: The PRSM rather than the CRSM correlated with progressive LDL modifications via reactive aldehydes in atherosclerotic patients with hypertension. Further investigation is warranted to evaluate whether the PRSM may serve as a potential index for monitoring LDL function in atherosclerosis and hypertension
Study on gas holdup characteristics of micro-bubble countercurrent contacting flotation column
In order to explore the gas holdup distribution of the microbubble countercurrent contact flotation column in the hematite column cationic reverse flotation process, respectively using conductance method and pressure drop method for air and water as experimental medium characteristics research of flotation column, the research group carries on the gas holdup, examines the aeration quantity, the fill medium and cation collector alkyl polyamine ether (An amine collectorâGE609 which consists of four elements: carbon, hydrogen, oxygen and nitrogen)within the column on the influence of the axial and radial gas holdup. The results show that the axial gas holdup from the bottom of the column to the top of the column increases with the increase of height in the range of 0.050.07dm3/s. The radial distribution of gas holdup generally shows the distribution law of âintermediate high, low on both sidesâ. After the filling medium is added into the column, the radial gas holdup is evenly distributed compared with the empty column, and the gas holdup is increased. Due to the high foaming performance of GE-609, the gas holdup in the column can be increased by changing the amount of aeration and the concentration of the reagent, which can exceed 60% at the maximum. Like other alcohol foaming agents, as time passes, the effect of GE-609 weakens and the gas holdup in the column gradually decreases. The addition of quantitative HCl can improve the foaming performance of GE-609, and the gas holdup in the column is significantly improved and the stability is enhanced
Deformation Characteristics of Asymmetric Gradient Extrusion in Preparing Ultra-Fine-Grained Bulk Materials
In this paper, a novel method for the preparation of ultra-fine-grained bulk materials called asymmetric gradient extrusion (AGE) is proposed. In AGE, the cross-section of the extrusion channel is a rectangle, and two inclined planes are staggered along the extrusion direction. To realize repetitive extrusion, the thickness of the workpiece is limited to be equal to the width of the channel outlet. In order to study the mechanism of ultra-fine grain formation in AGE, the deformation characteristics of AGE were investigated. First, the slip line field method was used to theoretically analyze the deformation characteristics and grain splitting in AGE. Then, the plastic deformation behavior of bulk samples in AGE and traditional extrusion was investigated and compared with the finite element method. In addition, the deformation characteristic and microstructure variation of pure copper bulk samples in AGE were experimentally investigated. The results showed that the deformation characteristics of workpieces were highly related to the two inclined planes within the die channel. Two independent deformation zones can be formed with increasing distance between the two inclined planes. The shear effects in each deformation zone lead to grain splitting during extrusion. Compared with traditional extrusion, the advantage of AGE is its amazing ability to form high and uniform strain during extrusion, which leads to the formation of small and uniform grains in the workpiece. After six passes of AGE, an average grain size of 0.6 Îźm can be achieved. The enhancement and accumulation of dislocations within grains was the dominating mechanism of grain fragmentation. AGE shows impressive potential in the preparation of ultra-fine-grained bulk materials
Study on Lane-Change Replanning and Trajectory Tracking for Intelligent Vehicles Based on Model Predictive Control
When an intelligent vehicle changes lanes, the state of other vehicles may change, which increases the risk of collision. Therefore, real-time local path replanning is needed at this time. Based on model predictive control (MPC), a lane-change trajectory replanning strategy was proposed, which was divided into a lane-change trajectory correction strategy, a lane-change switchback strategy and forward active collision avoidance strategy according to collision risk. Based on the collision risk function of the rectangular safety neighborhood, the objective functions were designed according to the specific requirements of different strategies. The vehicle lateral controller based on MPC and the vehicle longitudinal motion controller were established. The longitudinal velocity was taken as the joint point to establish the lateral and longitudinal integrated controller. The trajectory planning module, trajectory replanning module and trajectory tracking module were integrated in layers, and the three trajectory replanning strategies of lane-change trajectory correction, lane-change switchback and forward active collision avoidance were respectively simulated and verified. The simulation results showed the trajectory replanning strategy achieves collision avoidance under different scenarios and ensures the vehicleâs driving stability. The trajectory tracking layer achieves accurate tracking of the conventional lane-change trajectory and has good driving stability and comfort
Effect of the Coil Excitation Method on the Performance of a Dual-Coil Inductive Displacement Transducer
A dual-coil inductive displacement transducer is a non-contact type measuring element for measuring displacement and is widely used in large power equipment systems such as construction machinery and agricultural equipment. However, the effect of the coil excitation method on the performance of dual-coil inductive displacement sensors has not been studied. This paper investigates the impact of different coil excitation methods on the operating performance of displacement transducers. The working principle, electromagnetic characteristics, and electrical characteristics were analyzed by building a mathematical model. A transducer measurement device was used to determine the relationship between core displacement and coil inductance. Three coil excitation methods were proposed, and the effects of the three coil excitation methods on the amplitude variation, phase shift, linearity, and sensitivity of the output signal were studied by simulation based on the AD630 chip as the core of the conditioning circuit. Finally, the studyâs feasibility was demonstrated by comparing the experiment to the simulation. The results show that, under the uniform magnetic field strength distribution in the coil, the coil voltage variation is proportional to the inductive core displacement. The amplitude variation is the largest for the dual-coil series three-wire (DCSTW) and is the same for the dual-coil series four-wire (DCSFW) and dual-coil parallel differential (DCPD). DCSFW has an enormous phase shift. DCSTW has the best linearity. The research in this paper provides a theoretical basis for selecting a suitable coil excitation, which is conducive to further improving the operating performance of dual-coil inductive displacement transducers
A Data-Driven Approach for Lithology Identification Based on Parameter-Optimized Ensemble Learning
The identification of underground formation lithology can serve as a basis for petroleum exploration and development. This study integrates Extreme Gradient Boosting (XGBoost) with Bayesian Optimization (BO) for formation lithology identification and comprehensively evaluated the performance of the proposed classifier based on the metrics of the confusion matrix, precision, recall, F1-score and the area under the receiver operating characteristic curve (AUC). The data of this study are derived from Daniudui gas field and the Hangjinqi gas field, which includes 2153 samples with known lithology facies class with each sample having seven measured properties (well log curves), and corresponding depth. The results show that BO significantly improves parameter optimization efficiency. The AUC values of the test sets of the two gas fields are 0.968 and 0.987, respectively, indicating that the proposed method has very high generalization performance. Additionally, we compare the proposed algorithm with Gradient Tree Boosting-Differential Evolution (GTB-DE) using the same dataset. The results demonstrated that the average of precision, recall and F1 score of the proposed method are respectively 4.85%, 5.7%, 3.25% greater than GTB-ED. The proposed XGBoost-BO ensemble model can automate the procedure of lithology identification, and it may also be used in the prediction of other reservoir properties
Effect of Excitation Signal on Double-Coil Inductive Displacement Transducer
A double-coil inductive displacement transducer is a non-contact element for measuring displacement and is widely used in large power equipment systems such as construction machinery and agricultural machinery equipment. The type of coil excitation signal has an impact on the performance of the transducer, but there is little research on this. Therefore, the influence of the coil excitation signal on transducer performance is investigated. The working principle and characteristics of the double-coil inductive displacement transducer are analyzed, and the circuit simulation model of the transducer is established. From the aspects of phase shift, linearity, and sensitivity, the effects of a sine signal, a triangle signal, and a pulse signal on the transducer are compared and analyzed. The results show that the average phase shift, linearity, and sensitivity of the sine signal were 11.53°, 1.61%, and 0.372 V/mm, respectively; the average phase shift, linearity and sensitivity of the triangular signal were 1.38°, 1.56%, and 0.300 V/mm, respectively; and the average phase shift, linearity, and sensitivity of the pulse signal were 0.73°, 1.95%, and 0.621 V/mm, respectively. It can be seen that the phase shift of a triangle signal and a pulse signal is smaller than that of a sine signal, which can result in better signal phase-locked processing. The linearity of the triangle signal is better than the sine signal, and the sensitivity of the pulse signal is better than that of the sine signal
- âŚ