35 research outputs found

    Impact Analysis of Earthquake-Induced Cracks in Deep Geological Repositories for Nuclear Waste Fuel

    Get PDF
    Based on the concept of deep geologic repositories, high-level radioactive waste will be stored in deep deposition holes away from the ground surface. The heat generated by the waste will induce both significant stress increments and ground water seepage in a multiple geologic barrier system. The long-term ability of a barrier system is significantly impacted by coupling between the thermal, hydrological, and mechanical processes. The stability of a system may also depend particularly upon unanticipated factors such as the development of post-earthquake macrocracks. Therefore, this study investigates the three-dimensional transient and long term thermo-hydro-mechanical behavior of a barrier system. The results can be used for future reference in practical engineering design.高放射性用過核燃料所產生之長期衰變熱會對生物圈造成極大衝擊,目前國際上多傾向以深層地質處置作為最終處置之方式。處置過程中,極可能因為地震或地層變動等不可預期之因素,在天然障壁中產生大形裂縫,由此伴隨的災損效應將會加速障壁之劣化。本研究依據我國深層地質處置的初步設計概念,針對天然障壁系統長期之熱-水力-力學耦合效應,利用依序耦合分析方法,考慮不同的裂縫尺寸,針對其可能引致之熱應力與地下水影響進行評估

    Recurrent disturbances and the degradation of hard coral communities in Taiwan

    Get PDF
    Recurrent disturbances can have a critical effect on the structure and function of coral reef communities. In this study, long-term changes were examined in the hard coral community at Wanlitung, in southern Taiwan, between 1985 and 2010. In this 26 year interval, the reef has experienced repeated disturbances that include six typhoons and two coral-bleaching events. The frequency of disturbance has meant that species susceptible to disturbance, such as those in the genus Acropora and Montipora have almost disappeared from the reef. Indeed, almost all hard coral species have declined in abundance, with the result that total hard coral cover in 2010 (17.7%) was less than half what it was in 1985 (47.5%). In addition, macro-algal cover has increased from 11.3% in 2003 to 28.5% in 2010. The frequency of disturbance combined with possible chronic influence of a growing human population mean that a diverse reef assemblage is unlikely to persist on this reef into the future

    Correlation of virulence genes to clinical manifestations and outcome in patients with Streptococcus dysgalactiae subspecies equisimilis bacteremia

    Get PDF
    Background/PurposeStreptococcus dysgalactiae subsp. equisimilis (SDSE) is increasingly recognized as a human pathogen responsible for invasive infection and streptococcal toxic shock syndrome (STSS). The pathogen possesses virulence genes that resemble those found in Streptococcus pyogenes (GAS). We analyzed the association between these specific toxic genes, clinical presentations, and outcome in patients with SDSE infections.MethodsPatients (older than 18 years) with community-acquired invasive bacteremia caused by SDSE bacteremia who were undergoing treatment at China Medical University Hospital from June 2007 to December 2010 were included in this study. Multiplex polymerase chain reaction was performed to identify virulence genes of the SDSE isolates. Demographic data, clinical presentations, and outcome in patients with SDSE infections were reviewed and analyzed.ResultsForty patients with 41 episodes of SDSE bacteremia were reviewed. The median age of the patients with SDSE infection was 69.7 years; 55% were female and 78% had underlying diseases. Malignancy (13, 33%) and diabetes mellitus (13, 33%) were the most common comorbidities. The 30-day mortality rate was 12%. Compared with the survivors, the non-survivors had a higher rate of diabetes mellitus (80% vs. 26%), liver cirrhosis (60% vs.11%), shock (60% vs.17%), STSS (60% vs. 8%), and a high Pittsburgh bacteremia score >4 (40% vs. 6%). Most isolates had scpA, ska, saga, and slo genes, whereas speC, speG, speH, speI, speK, smez, and ssa genes were not detected. speA gene was identified only in one patient with STSS (1/6, 17%). All isolates were susceptible to penicillin, cefotaxime, levofloxacin, moxifloxacin, vancomycin, and linezolid.ConclusionIn invasive SDSE infections, most isolates carry putative virulence genes, such as scpA, ska, saga, and slo. Clinical SDSE isolates in Taiwan remain susceptible to penicillin cefotaxime, and levofloxacin

    A Review of Glass Fibre Recycling Technology Using Chemical and Mechanical Separation of Surface Sizing Agents

    No full text
    Glass fiber is widely used in various modern industrial applications because it has the advantages of good electrical insulation performance and good process ability. Inevitably, some flawed glass fiber generated during manufacturing processes becomes waste and, in recent years, the treatment or recycling of glass fiber waste has become an environmental concern. Since glass fiber is brittle, non-wearing, and can easily generate static electricity after friction, the surface of glass fiber must be coated with a wetting agent (i.e., surface sizing agent) to overcome these disadvantages. However, glass fiber waste cannot be directly recycled as glass raw materials due to the presence of the surface sizing agent and the high content of sodium element. Therefore, there is a need to develop a feasible technology for removal of surface sizing agent in order to recycle glass fiber waste. In this study, two methods were used to remove surface sizing agent from glass fiber waste. After removing the surface sizing agent, the treated glass fiber waste can replace sand particles for manufacturing controlled low-strength material (CLSM). The first method for removing surface sizing agent used different organic solvents such as ethyl acetate to dissolve the surface coating (i.e., surface sizing agent). Then, an optical microscope was used to observe the surface changes before and after such removal treatments. The second method involved grinding glass fiber waste into a fine powder and heating it to a high temperature. An X-ray diffractometer (XRD) and X-ray fluorescence (XRF) were used to analyze the surface characteristics of the glass fiber waste. The experimental results showed that different organic solvents could not effectively remove the surface sizing agent, even if the glass fiber waste was processed by ultrasonic vibration for 5 h. In contrast, after high heating at 800 °C for 2 h, the surface sizing agent could be removed, and glass fiber waste transformed to cristobalite. The CLSM concrete produced by mixing cristobalite with cement in an appropriate proportion can meet the CLSM specification standard in Taiwan

    Removal Mechanism and Effective Current of Electrocoagulation for Treating Wastewater Containing Ni(II), Cu(II), and Cr(VI)

    No full text
    This study aims to clarify the removal mechanism and to calculate the effective current of electrocoagulation (i.e., EC) for treating wastewater containing Ni(II), Cu(II), and Cr(VI). The adsorption behavior of various heavy metals onto Al(OH)3 coagulant generated by the EC process was investigated and the estimating method of the corresponding current was established. Results indicate that adsorption of single Ni(II) and Cu(II) by Al(OH)3 coagulant can be simulated by the Langmuir isotherm, while Cr(VI) adsorption fits the Freundlich isotherm better. As treating single heavy metal of wastewater, the removal mechanism of the EC process is the adsorption reaction. Under the coexisting condition, the Ni(II) and Cu(II) will compete for the same active sites on the Al(OH)3 surface and Cu(II) suppresses Ni(II) adsorption. As treating the coexisting heavy metals, Ni(II) removal not only associates with adsorption but also with the coprecipitation. In contrast, Cr(VI) does not compete with other metal ions for the same type of adsorption sites. Whether single or coexisting conditions, the adsorption capacity of heavy metals onto Al(OH)3 coagulants can be used to compute the necessary current to effectively remove heavy metals in the EC system

    Spatial and Temporal Distribution of Di-(2-ethylhexyl) Phthalate in Urban River Sediments

    No full text
    This study investigated the spatial distribution of di-(2-ethylhexyl) phthalate (DEHP), and its potential biological effects, in the surface sediments that were collected from 10 sites at the Love River during dry and wet seasons. The grain size and organic matter were measured to understand the key factors that affect the distribution of DEHP concentrations in the sediments of Love River. The mean DEHP concentrations in the sediments that were collected during the wet and dry seasons were 28.6 ± 19.5 and 17.8 ± 11.6 mg/kg dry weight, respectively. The highest DEHP concentration was observed in the sediments that were sampled in the vicinity of the estuary. The correlation analysis showed that the grain size and organic matter may play a key role in the DEHP distribution in the sediments during the dry season, whereas the DEHP concentrations in the wet season may be mainly affected by other environmental and hydrological conditions. By a comparison with the sediment quality guidelines, the levels of DEHP in the sediments of Love River were found to have the potential to result in an adverse effect on aquatic benthic organisms. Specifically, during the wet season, wastewater from upstream of Love River is flushed downstream, causing a higher DEHP concentration in the sediments. Future pollution prevention and management objectives should move towards reducing the discharge of upstream wastewater and establishing a complete sewer system to reduce DEHP pollution in the environment
    corecore