26 research outputs found

    Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method

    No full text
    Nanodrug-carrier delivery in the blood stream is strongly influenced by nanoparticle (NP) dispersion. This paper presents a numerical study on NP transport and dispersion in red blood cell (RBC) suspensions under shear and channel flow conditions, utilizing an immersed boundary fluid-structure interaction model with a lattice Boltzmann fluid solver, an elastic cell membrane model and a particle motion model driven by both hydrodynamic loading and Brownian dynamics. The model can capture the multiphase features of the blood flow. Simulations were performed to obtain an empirical formula to predict NP dispersion rate for a range of shear rates and cell concentrations. NP dispersion rate predictions from the formula were then compared to observations from previous experimental and numerical studies. The proposed formula is shown to accurately predict the NP dispersion rate. The simulation results also confirm previous findings that the NP dispersion rate is strongly influenced by local disturbances in the flow due to RBC motion and deformation. The proposed formula provides an efficient method for estimating the NP dispersion rate in modeling NP transport in large-scale vascular networks without explicit RBC and NP models

    Triangular temporal-distribution law for disintegrating internal solitons over a step

    No full text
    ABSTRACT: Internal solitary waves have been found to disintegrate into a series of solitons over variable bathymetry, with important applications for offshore engineering. Considering realistic background stratification in the South China Sea, internal solitary waves propagating over a step are studied here. By assuming disintegrated solitons propagate independently, a theoretical model, namely a triangular temporal-distribution law based on the Korteweg–de Vries theory, is proposed to describe the fission process of internal solitary waves undergoing disintegration. A parameter is then introduced to quantify the accuracy of the theoretical model. The results indicate that the triangular law predicts the fission process better for a longer travelling distance and a larger amplitude of internal solitary waves. Keywords: Internal solitary wave, Fission process, Triangular la

    Combined effects of topography and bottom friction on shoaling internal solitary waves in the South China Sea

    No full text
    A numerical study to a generalized Korteweg-de Vries (KdV) equation is adopted to model the propagation and disintegration of large-amplitude internal solitary waves (ISWs) in the South China Sea (SCS). Based on theoretical analysis and in situ measurements, the drag coefficient of the Chezy friction is regarded as inversely proportional to the initial amplitude of an ISW, rather than a constant as assumed in the previous studies. Numerical simulations of ISWs propagating from a deep basin to a continental shelf are performed with the generalized KdV model. It is found that the depression waves are disintegrated into several solitons on the continental shelf due to the variable topography. It turns out that the amplitude of the leading ISW reaches a maximum at the shelf break, which is consistent with the field observation in the SCS. Moreover, a dimensionless parameter defining the relative importance of the variable topography and friction is presented

    combinedeffectsoftopographyandbottomfrictiononshoalinginternalsolitarywavesinthesouthchinasea

    No full text
    A numerical study to a generalized Korteweg-de Vries(KdV)equation is adopted to model the propagation and disintegration of large-amplitude internal solitary waves(ISWs)in the South China Sea(SCS).Based on theoretical analysis and in situ measurements,the drag coefficient of the Chezy friction is regarded as inversely pro-portional to the initial amplitude of an ISW,rather than a constant as assumed in the previous studies.Numerical simulations of ISWs propagating from a deep basin to a continental shelf are performed with the generalized KdV model.It is found that the depression waves are disintegrated into several solitons on the continental shelf due to the variable topography.It turns out that the amplitude of the leading ISW reaches a maximum at the shelf break,which is consistent with the field observation in the SCS.Moreover,a dimensionless parameter defining the relative importance of the variable to-pography and friction is presented

    Linear analysis of the dynamic response of a riser subject to internal solitary waves

    No full text
    The flow field induced by internal solitary waves (ISWs) is peculiar wherein water motion occurs in the whole water depth, and the strong shear near the pycnocline can be generated due to the opposite flow direction between the upper and lower layers, which is a potential threat to marine risers. In this paper, the flow field of ISWs is obtained with the Korteweg-de Vries (KdV) equation for a two-layer fluid system. Then, a linear analysis is performed for the dynamic response of a riser with its two ends simply supported under the action of ISWs. The explicit expressions of the deflection and the moment of the riser are deduced based on the modal superposition method. The applicable conditions of the theoretical expressions are discussed. Through comparisons with the finite element simulations for nonlinear dynamic responses, it is proved that the theoretical expressions can roughly reveal the nonlinear dynamic response of risers under ISWs when the approximation for the linear analysis is relaxed to some extent

    Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method

    No full text
    Nanodrug-carrier delivery in the blood stream is strongly influenced by nanoparticle (NP) dispersion. This paper presents a numerical study on NP transport and dispersion in red blood cell (RBC) suspensions under shear and channel flow conditions, utilizing an immersed boundary fluid-structure interaction model with a lattice Boltzmann fluid solver, an elastic cell membrane model and a particle motion model driven by both hydrodynamic loading and Brownian dynamics. The model can capture the multiphase features of the blood flow. Simulations were performed to obtain an empirical formula to predict NP dispersion rate for a range of shear rates and cell concentrations. NP dispersion rate predictions from the formula were then compared to observations from previous experimental and numerical studies. The proposed formula is shown to accurately predict the NP dispersion rate. The simulation results also confirm previous findings that the NP dispersion rate is strongly influenced by local disturbances in the flow due to RBC motion and deformation. The proposed formula provides an efficient method for estimating the NP dispersion rate in modeling NP transport in large-scale vascular networks without explicit RBC and NP models
    corecore