48 research outputs found

    Ketogenic Diets and Hepatocellular Carcinoma.

    Get PDF
    The ketogenic diet (KD) is a low-carbohydrate, high-fat diet regarded as a potential intervention for cancers owing to its effects on tumor metabolism and behavior. Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, and its management is worth investigating because of the high fatality rate. Additionally, as the liver is the glucose and lipid metabolism center where ketone bodies are produced, the application of KD to combat HCC is promising. Prior studies have reported that KD could reduce the energy supply and affect the proliferation and differentiation of cancer cells by lowering the blood glucose and insulin levels. Furthermore, KD can increase the expression of hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) in hepatocytes and regulate lipid metabolism to inhibit the progression of HCC. In addition, β-hydroxybutyrate can induce histone hyperacetylation and reduce the expression of inflammatory factors to alleviate damage to hepatocytes. However, there are few relevant studies at present, and the specific effects and safety of KD on HCC warrant further research. Optimizing the composition of KD and combining it with other therapies to enhance its anti-cancer effects warrant further exploration

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress

    Full text link
    Stroke is a leading cause of death and disability in humans. The excessive production of reactive oxygen species (ROS) is an important contributor to oxidative stress and secondary brain damage after stroke. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an enzyme complex consisting of membrane subunits and cytoplasmic subunits, regulates neuronal maturation and cerebrovascular homeostasis. However, NADPH oxidase overproduction contributes to neurotoxicity and cerebrovascular disease. NADPH oxidase has been implicated as the principal source of ROS in the brain, and numerous studies have shown that the knockout of NADPH exerts a protective effect in the model of ischemic stroke. In this review, we summarize the mechanism of activation of the NADPH oxidase family members, the pathophysiological effects of NADPH oxidase isoforms in ischemic stroke, and the studies of NADPH oxidase inhibitors to explore potential clinical applications

    Differentially Expressed Long Noncoding RNAs Involved in FUBP1 Promoting Hepatocellular Carcinoma Cells Proliferation

    Full text link
    Background. Far upstream element-binding protein 1 (FUBP1) is reported to be involved in cancer development by regulating the transcription of c-myc gene through binding to far upstream element. Highly expressed FUBP1 was negatively correlated with survival rate of patients with hepatocellular carcinoma (HCC) and could promote the proliferation of HCC cells. However, the downstream mechanism of FUBP1 has not yet been clearly explained. This study is aimed at identifying the expression profiles of long noncoding RNA (lncRNA) in HCC cells in response to FUBP1 overexpression and at investigating the possible lncRNAs that participated in cell proliferation process regulated by FUBP1. Methods. The overexpression of FUBP1 was mediated by lentiviral infection on 3 different types of HCC cell lines (MHCC97-H, MHCC97-L, and Huh-7). The expression of target genes was detected by quantitative reverse transcription-PCR (RT-PCR) and western blotting assays. Microarray and quantitative RT-PCR were applied to screen the differentially expressed lncRNAs in HCC cells after FUBP1 overexpression. The Cell Counting Kit-8 assay was used to confirm the growth vitality of HCC cells. Results. The growth vitality of HCC cells was significantly increased after lentivirus infection. A total of 12 lncRNAs had the same expression trend in the 3 HCC cell lines in response to FUBP1 overexpression, including 3 upregulated lncRNAs and 9 downregulated lncRNAs. Coexpression analysis of dysregulated lncRNAs-mRNAs network showed that lnc-LYZ-2 was the lncRNA most relevant to FUBP1. Inhibition of lnc-LYZ-2 could significantly relieve the proproliferation effect of FUBP1 on HCC cells, suggesting that lnc-LYZ-2 was partially involved in proproliferation regulation of FUBP1. Conclusions. Our results indicated that FUBP1 induced the abnormal expression of lncRNAs and the FUBP1-lncRNAs coexpression network in HCC cells, which could provide theoretical and experimental basis for FUBP1-lncRNAs network involved in HCC development

    SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression

    Full text link
    The pandemic of coronavirus diseases 2019 (COVID-19) imposes a heavy burden on medical resources [1]. Whether there is correlation between viral load and disease severity has not been clarified. In the study, we retrospectively collected the virological data, as well as demographic, epidemiological clinical information of 92 patients with confirmed COVID-19 in a single hospital in Zhejiang Province, China. We compared the baseline viral loads between severe patients and those mild to moderate at admission and also between those developing severe disease during hospitalization and those not

    Immune Checkpoint Receptors Tim-3 and PD-1 Regulate Monocyte and T Lymphocyte Function in Septic Patients

    Full text link
    We aim to investigate the effects of Tim-3 and programmed cell death-1 (PD-1) on the monocytes and T lymphocytes in septic patients. Expression of Tim-3 and PD-1 on the CD3, CD4, and CD8 lymphocytes and monocytes was determined using flow cytometry. CBA technique was utilized to determine the expression of cytokines in the lymphocyte supernatant in addition to the IL-10 and TNF-α positivity in monocytes in the presence of Tim-3 and/or PD-1 receptor blockade. Compared with the normal control, significant elevation was observed in the expression of PD-1 on CD3 (P=0.004), CD4, and CD8 monocytes. Blockade of the Tim-3 signaling pathway contributed to the significant elevation of IL-10 and TNF-α in the supernatant of T lymphocytes in the septic patients, while the PD-1 signaling pathway blockade only triggered the obvious elevation of TNF-α in the T lymphocytes. Blockade of Tim-3 and PD-1 induced the positivity of IL-10- and TNF-α-expressing cells in the peripheral monocytes. Significant changes were noticed in the Tim-3 and PD-1 in the T lymphocytes and monocytes. Blockade of Tim-3 and PD-1 contributed to the function of lymphocytes and monocytes. In the septic process, Tim-3 and PD-1 played crucial roles in the immune response of T lymphocytes and monocytes
    corecore