35 research outputs found

    Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    Get PDF
    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected

    Anmerkungen Zu Sanctioned Violence in Early China

    No full text

    Technical Characteristics and Wear-Resistant Mechanism of Nano Coatings: A Review

    No full text
    Nano-coating has been a hot issue in recent years. It has good volume effect and surface effect, and can effectively improve the mechanical properties, corrosion resistance and wear resistance of the coatings. It is important to improve the wear resistance of the material surface. The successful preparation of nano-coatings directly affects the application of nano-coatings. Firstly, the preparation methods of conventional surface coatings such as chemical vapor deposition and physical vapor deposition, as well as the newly developed surface coating preparation methods such as sol-gel method, laser cladding and thermal spraying are reviewed in detail. The preparation principle, advantages and disadvantages and the application of each preparation method in nano-coating are analyzed and summarized. Secondly, the types of nano-coating materials are summarized and analyzed by inorganic/inorganic nanomaterial coatings and organic/inorganic nanomaterial coatings, and their research progress is summarized. Finally, the wear-resistant mechanism of nano-coatings is revealed from three aspects: grain refinement, phase transformation toughening mechanism and nano-effects. The application prospects of nano-coatings and the development potential combined with 3D technology are prospected

    The Estimation of Centrifugal Pump Flow Rate Based on the Power–Speed Curve Interpolation Method

    No full text
    During the global energy crisis, it is essential to improve the energy efficiency of pumps by adjusting the pump’s control strategy according to the operational states. However, monitoring the pump’s operational states with the help of external sensors brings both additional costs and risks of failure. This study proposed an interpolation method based on PN curves (power–speed curves) containing information regarding motor shaft power, speed, and flow rate to achieve high accuracy in predicting the pump’s flow rates without flow sensors. The impact factors on the accuracy of the estimation method were analyzed. Measurements were performed to validate the feasibility and robustness of the PN curve interpolation method and compared with the QP and back-propagation neural network (BPNN) methods. The results indicated that the PN curve interpolation method has lower errors than the other two prediction models. Moreover, the average absolute errors of the PN curve interpolation method in the project applications at 47.5 Hz, 42.5 Hz, 37.5 Hz, and 32.5 Hz are 0.1442 m3/h, 0.2047 m3/h, 0.2197 m3/h, and 0.1979 m3/h. Additionally, the average relative errors are 2.0816%, 3.2875%, 3.6981%, and 2.9419%. Hence, this method fully meets the needs of centrifugal pump monitoring and control

    Preparation and Modification Technology Analysis of Ionic Polymer-Metal Composites (IPMCs)

    No full text
    As a new type of flexible smart material, ionic polymer-metal composite (IPMC) has the advantages of being lightweight and having fast responses, good flexibility, and large deformation ranges. However, IPMC has the disadvantages of a small driving force and short lifespan. Based on this, this paper firstly analyzes the driving mechanism of IPMC. Then, it focuses on the current preparation technology of IPMC from the aspects of electroless plating and mechanical plating. The advantages and disadvantages of various preparation methods are analyzed. Due to the special driving mechanism of IPMC, there is a problem of short non-aqueous working time. Therefore, the modification research of IPMC is reviewed from the aspects of the basement membrane, working medium, and electrode materials. Finally, the current challenges and future development prospects of IPMC are discussed
    corecore