510 research outputs found

    Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity

    Full text link
    We investigate the transport properties of two photons inside a one-dimensional waveguide side-coupled to a single-mode nonlinear cavity. The cavity is filled with a nonlinear Kerr medium. Based on the Laplace transform method, we present analytic solution of quantum states of the transmitted and reflected two photons, which are initially prepared in a Lorentzian wave packet. The solution reveals how quantum correlation between the two photons emerge after the scattering by the nonlinear cavity. In particular, we show that the output wave function of the two photons in position space can be localized in the relative coordinates, which is a feature that may be interpreted as a two-photon bound state in this waveguide-cavity system.Comment: 9 pages, 5 figure

    Parametric generation of quadrature squeezing of mirrors in cavity optomechanics

    Full text link
    We propose a method to generate quadrature squeezed states of a moving mirror in a Fabry-Perot cavity. This is achieved by exploiting the fact that when the cavity is driven by an external field with a large detuning, the moving mirror behaves as a parametric oscillator. We show that parametric resonance can be reached approximately by modulating the driving field amplitude at a frequency matching the frequency shift of the mirror. The parametric resonance leads to an efficient generation of squeezing, which is limited by the thermal noise of the environment.Comment: 4 pages, 2 figure

    Single-particle machine for quantum thermalization

    Full text link
    The long time accumulation of the \textit{random} actions of a single particle "reservoir" on its coupled system can transfer some temperature information of its initial state to the coupled system. This dynamic process can be referred to as a quantum thermalization in the sense that the coupled system can reach a stable thermal equilibrium with a temperature equal to that of the reservoir. We illustrate this idea based on the usual micromaser model, in which a series of initially prepared two-level atoms randomly pass through an electromagnetic cavity. It is found that, when the randomly injected atoms are initially prepared in a thermal equilibrium state with a given temperature, the cavity field will reach a thermal equilibrium state with the same temperature as that of the injected atoms. As in two limit cases, the cavity field can be cooled and "coherently heated" as a maser process, respectively, when the injected atoms are initially prepared in ground and excited states. Especially, when the atoms in equilibrium are driven to possess some coherence, the cavity field may reach a higher temperature in comparison with the injected atoms. We also point out a possible experimental test for our theoretical prediction based on a superconducting circuit QED system.Comment: 9 pages,4 figures
    • …
    corecore