4 research outputs found

    Alterations of Functional and Structural Networks in Schizophrenia Patients with Auditory Verbal Hallucinations

    Get PDF
    Background: There have been many attempts at explaining the underlying neuropathological mechanisms of auditory verbal hallucinations (AVH) in schizophrenia on the basis of regional brain changes, with the most consistent findings being that AVH are associated with functional and structural impairments in auditory and speech-related regions. However, the human brain is a complex network and the global topological alterations specific to AVH in schizophrenia remain unclear. Methods: 35 schizophrenia patients with AVH, 41 patients without AVH and 50 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). The whole-brain functional and structural networks were constructed and analyzed using graph theoretical approaches. Inter-group differences in global network metrics (including small-world properties and network efficiency) were investigated. Results: We found that three groups had a typical small-world topology in both functional and structural networks. More importantly, schizophrenia patients with and without AVH exhibited common disruptions of functional networks, characterized by decreased clustering coefficient, global efficiency and local efficiency, and increased characteristic path length; structural networks of only schizophrenia patients with AVH showed increased characteristic path length compared with those of healthy controls. Conclusions: Our findings suggest that less small-worldization and lower network efficiency of functional networks may be an independent trait characteristic of schizophrenia, and regularization of structural networks may be the underlying pathological process engaged in schizophrenic AVH symptom expression

    The Dorsal Anterior Cingulate Cortex Modulates Dialectical Self-Thinking

    Get PDF
    Dialectical self-thinking involves holding the view that one can possess contradictory traits such as extraverted and introverted. Prior work has demonstrated that the dorsal part of anterior cingulate cortex (dACC) plays a crucial role in conflict monitoring as well as self-related processing. Here we tested the function of dACC in dialectical self-thinking using a modified classical self-referential paradigm (self- vs. other-referential thinking), in which participants had to make a judgment whether a simultaneously presented pair of contradictory or non-contradictory traits properly described them while brain activity was recording using functional magnetic resonance imaging (fMRI). The data showed that activity in the dACC during the processing of self-relevant conflicting information was positively correlated with participants' dispositional level of naïve dialecticism (measured with the Dialectical Self Scale). Psychophysiological interaction (PPI) analyses further revealed increased functional connectivity between the dACC and the caudate, middle temporal gyrus and hippocampus during the processing of self-relevant conflicting information for dialectical thinkers. These results support the hypothesis that the dACC has a key role in dialectical self-thinking

    Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean

    No full text
    A wide range of RNA species interacting with microRNAs (miRNAs) form a complex gene regulation network and play vital roles in diverse biological processes. In this study, we performed a genome-wide identification of endogenous target mimics (eTMs) for miRNAs and phased-siRNA-producing loci (PHAS) in soybean with a focus on those involved in lipid metabolism. The results showed that a large number of eTMs and PHAS genes could be found in soybean. Additionally, we found that lipid metabolism related genes were potentially regulated by 28 miRNAs, and nine of them were potentially further regulated by a number of eTMs with expression evidence. Thirty-three miRNAs were found to trigger production of phasiRNAs from 49 PHAS genes, which were able to target lipid metabolism related genes. Degradome data supported miRNA- and/or phasiRNA-mediated cleavage of genes involved in lipid metabolism. Most eTMs for miRNAs involved in lipid metabolism and phasiRNAs targeting lipid metabolism related genes showed a tissue-specific expression pattern. Our bioinformatical evidences suggested that lipid metabolism in soybean is potentially regulated by a complex non-coding network, including miRNAs, eTMs and phasiRNAs, and the results extended our knowledge on functions of non-coding RNAs

    Different miRNA expression profiles between human breast cancer turmors and serum

    Get PDF
    A bunch of miRNAs have been demonstrated to be aberrantly expressed in cancer tumor tissue and serum. The miRNA signatures identified from the serum samples could serve as potential noninvasive diagnostic markers for breast cancer. The role of the miRNAs in cancerigenesis is unclear. In this study, we generated the expression profiles of miRNAs from the paired breast cancer tumors, normal, tissue, and serum samples from eight patients using small RNA-sequencing. Serum samples from eight healthy individuals were used as normal controls. We identified total 174 significantly differentially expressed miRNAs between tumors and the normal tissues, and 109 miRNAs between serum from patients and serum from healthy individuals. There are only 10 common miRNAs. This suggests that only a small portion of tumor miRNAs are released into serum selectively. Interestingly, the expression change pattern of 28 miRNAs is opposite between breast cancer tumors and serum. Functional analysis shows that the differentially expressed miRNAs and their target genes form a complex interaction network affecting many biological processes and involving in many types of cancer such as prostate cancer, basal cell carcinoma, acute myeloid leukemia, and more
    corecore