903 research outputs found
Non-spherical shapes of capsules within a fourth-order curvature model
We minimize a discrete version of the fourth-order curvature based Landau
free energy by extending Brakke's Surface Evolver. This model predicts
spherical as well as non-spherical shapes with dimples, bumps and ridges to be
the energy minimizers. Our results suggest that the buckling and faceting
transitions, usually associated with crystalline matter, can also be an
intrinsic property of non-crystalline membranes.Comment: 6 pages, 4 figures (LaTeX macros EPJ), accepted for publication in
EPJ
Vesicles in solutions of hard rods
The surface free energy of ideal hard rods near curved hard surfaces is
determined to second order in curvature for surfaces of general shape. In
accordance with previous results for spherical and cylindrical surfaces it is
found that this quantity is non-analytical when one of the principal curvatures
changes signs. This prohibits writing it in the common Helfrich form. It is
shown that the non-analytical terms are the same for any aspect ratio of the
rods. These results are used to find the equilibrium shape of vesicles immersed
in solutions of rod-like (colloidal) particles. The presence of the particles
induces a change in the equilibrium shape and to a shift of the prolate-oblate
transition in the vesicle phase diagram, which are calculated within the
framework of the spontaneous curvature model. As a consequence of the special
form of the energy contribution due to the rods these changes cannot be
accounted for by a simple rescaling of the elastic constants of the vesicle as
for solutions of spherical colloids or polymers.Comment: 11 pages, 7 figures, submitted to Phys. Rev.
Spherical-box approach for resonances in presence of Coulomb interaction
The spherical-box approach is extended to calculate the resonance parameters
and the real part of the wave function for single particle resonances in a
potential containing the long-range Coulomb interaction. A model potential is
taken to demonstrate the ability and accuracy of this approach. The calculated
resonance parameters are compared with available results from other methods. It
is shown that in the presence of the Coulomb interaction, the spherical-box
approach works well for not so broad resonances. In particular, for very narrow
resonances, the present method gives resonance parameters in a very high
precision.Comment: 10 pages, 5 EPS figures; to be published in J. Phys.
Constraints on Dark Energy Models from Weak Gravity Conjecture
We study the constraints on the dark energy model with constant equation of
state parameter and the holographic dark energy model by using the
weak gravity conjecture. The combination of weak gravity conjecture and the
observational data gives at the confidence level. The
holographic dark energy model realized by a scalar field is in swampland.Comment: 4 two column pages, 3 figures, accepted by Chin. Phys. Let
Numerical observation of non-axisymmetric vesicles in fluid membranes
By means of Surface Evolver (Exp. Math,1,141 1992), a software package of
brute-force energy minimization over a triangulated surface developed by the
geometry center of University of Minnesota, we have numerically searched the
non-axisymmetric shapes under the Helfrich spontaneous curvature (SC) energy
model. We show for the first time there are abundant mechanically stable
non-axisymmetric vesicles in SC model, including regular ones with intrinsic
geometric symmetry and complex irregular ones. We report in this paper several
interesting shapes including a corniculate shape with six corns, a
quadri-concave shape, a shape resembling sickle cells, and a shape resembling
acanthocytes. As far as we know, these shapes have not been theoretically
obtained by any curvature model before. In addition, the role of the
spontaneous curvature in the formation of irregular crenated vesicles has been
studied. The results shows a positive spontaneous curvature may be a necessary
condition to keep an irregular crenated shape being mechanically stable.Comment: RevTex, 14 pages. A hard copy of 8 figures is available on reques
HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype.
Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine SNPs associated with the extent of abdominal aortic calcification (n = 9,417) or descending thoracic aortic calcification (n = 8,422). Two genetic loci, HDAC9 and RAP1GAP, were associated with abdominal aortic calcification at a genome-wide level (P < 5.0 × 10-8). No SNPs were associated with thoracic aortic calcification at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells promoted calcification and reduced contractility, while inhibition of HDAC9 in human aortic smooth muscle cells inhibited calcification and enhanced cell contractility. In matrix Gla protein-deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a previously unknown role for HDAC9 in the development of vascular calcification
Polymorphisms of the prion protein gene and their effects on litter size and risk evaluation for scrapie in Chinese Hu sheep
It is well known that scrapie is a fatal, neurodegenerative disease in sheep and goat, which belongs to the group of transmissible spongiform encephalopathies (TSEs) or prion diseases. It has been confirmed that the polymorphisms of prion protein gene (PRNP) at codons 136, 154, and 171 have strong relationship with scrapie in sheep. In the present study, nine polymorphisms of PRNP at codons 136, 154, and 171 and other six loci (at codons 101, 112, 127, 137, 138, and 152) were detected in 180 Chinese Hu sheep. All the alleles at codons 136, 154, and 171 have been identified and resulted in three new genotypes. The frequencies of predominant alleles were 85% (A136), 99.40% (R154), and 37.78% (Q171), respectively. The predominant haplotype ARQ has a relatively high frequency of 57.77%. The frequencies of dominant genotypes of ARR/ARQ and ARQ/ARQ were 30 and 26.67%, respectively. Three new found genotypes named ARQ/TRK, ARQ/TRR, and TRR/TRQ had the same lower frequencies (0.56%). The relationship of PRNP genotype with scrapie risk and litter size showed that the predominant genotypes are corresponded to the risk score of R1 (1.67%), R2 (32.22%), and R3 (42.22%). Just at the first parity, the individuals with ARH/ARH genotype had significantly larger litter size than the mean value and those with ARQ/ARQ and ARR/ARQ genotypes. In short, this study provided preliminary information about alleles and genotypes of PRNP in Chinese Hu sheep. It could be concluded that Hu sheep has a low susceptibility to natural scrapie, and the predominant PRNP genotype at least has no significant effect on litter size
Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2
The chemotherapeutic arsenal against human African trypanosomiasis, sleeping sickness, is limited and can cause severe, often fatal, side effects. One of the classic and most widely used drugs is pentamidine, an aromatic diamidine compound introduced in the 1940s. Recently, a genome-wide loss-of-function screen and a subsequently generated trypanosome knockout strain revealed a specific aquaglyceroporin, TbAQP2, to be required for high-affinity uptake of pentamidine. Yet, the underlying mechanism remained unclear. Here, we show that TbAQP2 is not a direct transporter for the di-basic, positively charged pentamidine. Even though one of the two common cation filters of aquaglyceroporins, i.e. the aromatic/arginine selectivity filter, is unconventional in TbAQP2, positively charged compounds are still excluded from passing the channel. We found, instead, that the unique selectivity filter layout renders pentamidine a nanomolar inhibitor of TbAQP2 glycerol permeability. Full, non-covalent inhibition of an aqua(glycero)porin in the nanomolar range has not been achieved before. The remarkable affinity derives from an electrostatic interaction with Asp265 and shielding from water as shown by structure-function evaluation and point mutation of Asp265. Exchange of the preceding Leu264 to arginine abolished pentamidine-binding and parasites expressing this mutant were pentamidine-resistant. Our results indicate that TbAQP2 is a high-affinity receptor for pentamidine. Taken together with localization of TbAQP2 in the flagellar pocket of bloodstream trypanosomes, we propose that pentamidine uptake is by endocytosis
A critical review of the evidence for M32 being a compact dwarf satellite of M31 rather than a more distant normal galaxy
Since Baade's photographic study of M32 in the mid 1940s, it has been
accepted as an established fact that M32 is a compact dwarf satellite of M31.
The purpose of this paper is to report on the findings of our investigation
into the nature of the existing evidence. We find that the case for M32 being a
satellite of M31 rests upon Hubble Space Telescope (HST) based stellar
population studies which have resolved red-giant branch (RGB) and red clump
stars in M32 as well as other nearby galaxies. Taken in isolation, this recent
evidence could be considered to be conclusive in favour of the existing view.
However, the conventional scenario does not explain M32's anomalously high
central velocity dispersion for a dwarf galaxy (several times that of either
NGC 147, NGC 185 or NGC 205) or existing planetary nebula observations (which
suggest that M32 is more than twice as distant as M31) and also requires an
elaborate physical explanation for M32's inferred compactness. Conversely, we
find that the case for M32 being a normal galaxy, of the order of three times
as distant as M31, is supported by: (1) a central velocity dispersion typical
of intermediate galaxies, (2) the published planetary nebula observations, and
(3) known scaling relationships for normal early-type galaxies. However, this
novel scenario cannot account for the high apparent luminosities of the RGB
stars resolved in the M32 direction by HST observations. We are therefore left
with two apparently irreconcilable scenarios, only one of which can be correct,
but both of which suffer from potentially fatal evidence to the contrary. This
suggests that current understanding of some relevant fields is still very far
from adequate.Comment: 17 pages, 3 Postscript figures, uses cjaa.cls and natbib.sty
(published version has 16 pages
- …