1,042 research outputs found

    Collapse Transition of Two-Dimensional Flexible and Semiflexible Polymers

    Full text link
    The nature of the globule-coil transition of surface-confined polymers has been an issue of debate. Here this 2D collapse transition is studied through a partially directed lattice model. In the general case of polymers with positive bending stiffness (Δ>0\Delta>0), the collapse transition is {\em first-order}; it becomes {\em second-order} only in the limiting case of zero bending stiffness (Δ0\Delta\equiv 0). These analytical results are confirmed by Monte Carlo simulations. We also suggest some possible future experiments.Comment: 4 pages, 3 figure

    Better synchronizability predicted by a new coupling method

    Full text link
    In this paper, inspired by the idea that the hub nodes of a highly heterogeneous network are not only the bottlenecks, but also effective controllers in the network synchronizing process, we bring forward an asymmetrical coupling method where the coupling strength of each node depends on its neighbors' degrees. Compared with the uniform coupled method and the recently proposed Motter-Zhou-Kurth method, the synchronizability of scale-free networks can be remarkably enhanced by using the present coupled method.Comment: 6 pages, 6 figures; to be published in EPJ

    Temperature dependence of circular DNA topological states

    Full text link
    Circular double stranded DNA has different topological states which are defined by their linking numbers. Equilibrium distribution of linking numbers can be obtained by closing a linear DNA into a circle by ligase. Using Monte Carlo simulation, we predict the temperature dependence of the linking number distribution of small circular DNAs. Our predictions are based on flexible defect excitations resulted from local melting or unstacking of DNA base pairs. We found that the reduced bending rigidity alone can lead to measurable changes of the variance of linking number distribution of short circular DNAs. If the defect is accompanied by local unwinding, the effect becomes much more prominent. The predictions can be easily investigated in experiments, providing a new method to study the micromechanics of sharply bent DNAs and the thermal stability of specific DNA sequences. Furthermore, the predictions are directly applicable to the studies of binding of DNA distorting proteins that can locally reduce DNA rigidity, form DNA kinks, or introduce local unwinding.Comment: 15 pages in preprint format, 4 figure

    A Stochastic Second-Order Proximal Method for Distributed Optimization

    Full text link
    In this paper, we propose a distributed stochastic second-order proximal method that enables agents in a network to cooperatively minimize the sum of their local loss functions without any centralized coordination. The proposed algorithm, referred to as St-SoPro, incorporates a decentralized second-order approximation into an augmented Lagrangian function, and then randomly samples the local gradients and Hessian matrices of the agents, so that it is computationally and memory-wise efficient, particularly for large-scale optimization problems. We show that for globally restricted strongly convex problems, the expected optimality error of St-SoPro asymptotically drops below an explicit error bound at a linear rate, and the error bound can be arbitrarily small with proper parameter settings. Simulations over real machine learning datasets demonstrate that St-SoPro outperforms several state-of-the-art distributed stochastic first-order methods in terms of convergence speed as well as computation and communication costs.Comment: 6 pages, 8 figure

    Instability and Periodic Deformation in Bilayer Membranes Induced by Freezing

    Full text link
    The instability and periodic deformation of bilayer membranes during freezing processes are studied as a function of the difference of the shape energy between the high and the low temperature membrane states. It is shown that there exists a threshold stability condition, bellow which a planar configuration will be deformed. Among the deformed shapes, the periodic curved square textures are shown being one kind of the solutions of the associated shape equation. In consistency with recent expe rimental observations, the optimal ratio of period and amplitude for such a texture is found to be approximately equal to (2)^{1/2}\pi.Comment: 8 pages in Latex form, 1 Postscript figure. To be appear in Mod. Phys. Lett. B. 199
    corecore