14,330 research outputs found

    Lifshitz Transition in Underdoped Cuprates

    Full text link
    Recent studies show that quantum oscillations thought to be associated with a density wave reconstructed Fermi surface disappear at a critical value of the doping for YBa2Cu3O6+y, and the cyclotron mass diverges as the critical value is approached from the high doping side. We argue that the phenomenon is due to a Lifshitz transition where the pockets giving rise to the quantum oscillations connect to form an open (quasi-1d) Fermi surface. The estimated critical doping is close to that found by experiment, and the theory predicts a logarithmic divergence of the cyclotron mass with a coefficient comparable to that observed in experiment.Comment: 4 pages, 4 figure

    Interacting Attention-gated Recurrent Networks for Recommendation

    Full text link
    Capturing the temporal dynamics of user preferences over items is important for recommendation. Existing methods mainly assume that all time steps in user-item interaction history are equally relevant to recommendation, which however does not apply in real-world scenarios where user-item interactions can often happen accidentally. More importantly, they learn user and item dynamics separately, thus failing to capture their joint effects on user-item interactions. To better model user and item dynamics, we present the Interacting Attention-gated Recurrent Network (IARN) which adopts the attention model to measure the relevance of each time step. In particular, we propose a novel attention scheme to learn the attention scores of user and item history in an interacting way, thus to account for the dependencies between user and item dynamics in shaping user-item interactions. By doing so, IARN can selectively memorize different time steps of a user's history when predicting her preferences over different items. Our model can therefore provide meaningful interpretations for recommendation results, which could be further enhanced by auxiliary features. Extensive validation on real-world datasets shows that IARN consistently outperforms state-of-the-art methods.Comment: Accepted by ACM International Conference on Information and Knowledge Management (CIKM), 201

    Enrichment Factors of Perfluoroalkyl Oxoanions at the Air/Water Interface

    Get PDF
    The refractory, water-bound perfluoro-n-alkyl carboxylate F(CF_2)_nCO_2^− and sulfonate F(CF_2)_nSO_3^− surfactant anions reach remote locations by mechanisms that are not well understood. Here we report experiments in which the relative concentrations of these anions on the surface of microdroplets produced by nebulizing their aqueous solutions are measured via electrospray ionization mass spectrometry. Enrichment factors f (relative to Br^−: f(Br^−) ≡ 1) increase with n, asymptotically reaching f[F(CF_2)_nSO_3^−] ~2f[F(CF_2)_nCO_2^−] ~200 f(Br^−) values above n ~ 8. The larger f values for F(CF_2)_nSO_3^− over their F(CF_2)_nCO_2^− congeners are consistent with a closer approach of the bulkier, less hydrated −SO_3^− headgroup to the air/water interface. A hyperbolic, rather than the predicted linear log f[F(CF_2)_nCO_2^−] vs n dependence suggests the onset of conformational restrictions to interfacial enrichment above n ~4. Marine aerosols produced from contaminated ocean surface waters are therefore expected to be highly enriched in F(CF_2)_nCO_2^−/F(CF_2)_nSO_3^− species

    Distinct metabolic programs induced by TGF-β1 and BMP2 in human articular chondrocytes with osteoarthritis

    Get PDF
    Objectives: Cellular energy metabolism is important for the function of all tissues, including cartilage. Recent studies indicate that superficial and deep subpopulations of articular chondrocytes (ACs) have distinct metabolic profiles. At the cellular and molecular level, osteoarthritis (OA) is characterised by alteration from a healthy homoeostatic state towards a catabolic state. Several molecular pathways, including transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signalling, have been identified as critical players in the pathogenesis and progression of OA. However, the manner in which these factors influence cellular energy metabolism in ACs is not well understood. This study investigates the effect of TGF-β or BMP signalling on energy metabolism in human articular chondrocytes (hACs). Methods: ACs were isolated from residual macroscopically full thickness and intact cartilage from the femoral condyle of human samples obtained from patients with OA. ACs were treated with Vehicle (control), TGF-β1 or BMP2 for 48–72 hours. Metabolic assays were performed to determine glucose consumption, lactate production and adenosine triphosphate (ATP) production, whereas the mitochondrial stress test was performed to determine oxygen consumption rate. Protein was isolated to assess translational activity and was evaluated using Western blot. Results: We showed that TGF-β1, known to maintain chondrocyte homoeostasis, stimulated glycolysis by upregulating key glycolytic factors, such as glucose transporter 1 (Glut1) and hexokinase II, while reducing oxidative phosphorylation in hACs. In contrast, BMP2 enhanced mitochondrial metabolism and oxidative phosphorylation and had a minimal effect on key glycolytic regulators. Conclusions: Our data revealed distinct metabolic programs induced by TGF-β1 and BMP2 in hACs, suggesting that the regulation of cellular metabolism may represent a new mechanism underlying the pathogenesis of OA. The translational potential of this article: The findings define the regulation of energy metabolism as a potential novel therapeutic approach for the treatment of OA

    Local vertical measurements and violation of Bell inequality

    Full text link
    For two qubits belonging to Alice and Bob, we derive an approach to setup the bound of Bell operator in the condition that Alice and Bob continue to perform local vertical measurements. For pure states we find that if the entanglement of the two qubits is less than 0.2644 (measured with von Neumann entropy) the violation of the Bell inequality will never be realized, and only when the entanglement is equal to 1 the maximal violation (222\sqrt{2}) can occur. For specific form of mixed states, we prove that the bound of the Bell inequality depends on the concurrence. Only when the concurrence is greater than 0.6 the violation of the Bell inequality can occur, and the maximal violation can never be achieved. We suggest that the bound of the Bell operator in the condition of local vertical measurements may be used as a measure of the entanglement.Comment: 4 pages, 3 figure

    Quantum phase transition in easy-axis antiferromagnetic Heisenberg spin-1 chain

    Full text link
    The fidelity and entropy in an easy-axis antiferromagnetic Heisenberg spin-1 chain are studied numerically. By using the method of density-matrix renormalization group, the effects of anisotropy on fidelity and entanglement entropy are investigated. Their relations with quantum phase transition are analyzed. It is found that the quantum phase transition from the Haldane spin liquid to N\'eel spin solid can be well characterized by the fidelity. The phase transition can be hardly detected by the entropy but it can be successfully detected by the first deviation of the entropy.Comment: 3 figure

    Quantum discord dynamical behaviors due to initial system-cavity correlations

    Full text link
    We analyze the roles of initial correlations between the two-qubit system and a dissipative cavity on quantum discord dynamics of two qubits. Considering two initial system-cavity states, we show that the initial system-cavity correlations not only can initially increase the two-qubit quantum discord but also would lead to a larger long-time quantum discord asymptotic value. Moreover, quantum discord due to initial correlations is more robust than the case of the initial factorized state. Finally, we show the initial correlations' importance for dynamics behaviors of mutual information and classical correlation

    Adiabatic Geometric Phase for a General Quantum States

    Full text link
    A geometric phase is found for a general quantum state that undergoes adiabatic evolution. For the case of eigenstates, it reduces to the original Berry's phase. Such a phase is applicable in both linear and nonlinear quantum systems. Furthermore, this new phase is related to Hannay's angles as we find that these angles, a classical concept, can arise naturally in quantum systems. The results are demonstrated with a two-level model.Comment: 4 pages, 2 figure
    • …
    corecore