52 research outputs found

    Sphingomyelin synthase overexpression increases cholesterol accumulation and decreases cholesterol secretion in liver cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have shown that plasma high density lipoprotein cholesterol levels are negatively correlated with the development of atherosclerosis, whereas epidemiological studies have also shown that plasma sphingomyelin level is an independent risk factor for atherosclerosis.</p> <p>Methods</p> <p>To evaluate the relationship between cellular sphingomyelin level and cholesterol metabolism, we created two cell lines that overexpressed sphingomyelin synthase 1 or 2 (SMS1 or SMS2), using the Tet-off expression system.</p> <p>Results</p> <p>We found that SMS1 or SMS2 overexpression in Huh7 cells, a human hepatoma cell line, significantly increased the levels of intracellular sphingomyelin, cholesterol, and apolipoprotein A-I and decreased levels of apolipoprotein A-I and cholesterol in the cell culture medium, implying a defect in both processes.</p> <p>Conclusions</p> <p>Our findings indicate that the manipulation of sphingomyelin synthase activity could influence the metabolism of sphingomyelin, cholesterol and apolipoprotein A-I.</p

    Interaction of the Coronavirus Infectious Bronchitis Virus Membrane Protein with β-Actin and Its Implication in Virion Assembly and Budding

    Get PDF
    Coronavirus M protein is an essential component of virion and plays pivotal roles in virion assembly, budding and maturation. The M protein is integrated into the viral envelope with three transmembrane domains flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. In this study, we showed co-purification of the M protein from coronavirus infectious bronchitis virus (IBV) with actin. To understand the cellular factors that may be involved in virion assembly, budding and maturation processes, IBV M was used as the bait in a yeast two-hybrid screen, resulting in the identification of β-actin as a potentially interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation and immunofluorescence microscopy in mammalian cells, and mutation of amino acids A159 and K160 on the M protein abolished the interaction. Introduction of the A159-K160 mutation into an infectious IBV clone system blocks the infectivity of the clone, although viral RNA replication and subgenomic mRNA transcription were actively detected. Disruption of actin filaments with cell-permeable agent cytochalasin D at early stages of the infection cycle led to the detection of viral protein synthesis in infected cells but not release of virus particles to the cultured media. However, the same treatment at late stages of the infection cycle did not affect the release of virus particles to the media, suggesting that disruption of the actin filaments might block virion assembly and budding, but not release of the virus particles. This study reveals an essential function of actin in the replication cycle of coronavirus

    Fabrication of Anticorrosion Dual-Component Silane Film on AZ31 Mg Alloy Surface by Self-assembly Method

    No full text
    Fabrication of Anticorrosion Dual-Component Silane Film on AZ31 Mg Alloy Surface by Self-assembly Metho

    Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation

    No full text
    Phosphatidylcholines (PCs) are major phospholipids in the mammalian cell membrane. Structural remodeling of PCs is associated with many biological processes. Lysophosphatidylcholine acyltransferase 3 (Lpcat3), which catalyzes the incorporation of polyunsaturated fatty acyl chains into the sn-2 site of PCs, plays an important role in maintaining plasma membrane fluidity. Adipose tissue is one of the main distribution organs of Lpcat3, while the relationship between Lpcat3 and adipose tissue dysfunction during overexpansion remains unknown. In this study, we reveal that both polyunsaturated PC content and Lpcat3 expression are increased in abdominal adipose tissues of high-fat diet-fed mice when compared with chow-diet-fed mice, indicating that Lpcat3 is involved in adipose tissue overexpansion and dysfunction. Our experiments in 3T3-L1 adipocytes show that inhibition of Lpcat3 does not change triglyceride accumulation but increases palmitic acid-induced inflammation and lipolysis. Conversely, Lpcat3 overexpression exhibits anti-inflammatory and anti-lipolytic effects. Furthermore, mechanistic studies demonstrate that Lpcat3 deficiency promotes reactive oxygen species (ROS) generation by increasing NOX enzyme activity by facilitating the translocation of NOX4 to lipid rafts, thereby aggregating 3T3-L1 adipocyte inflammation induced by palmitic acid. Moreover, overexpression of Lpcat3 exhibits the opposite effects. These findings suggest that Lpcat3 protects adipocytes from inflammation during adipose tissue overexpansion by reducing ROS generation. In conclusion, our study demonstrates that Lpcat3 deficiency promotes palmitic acid-induced inflammation in 3T3-L1 adipocytes by enhancing ROS generation

    Tribological properties of attapulgite/La2O3 nanocomposite as lubricant additive for a steel/steel contact

    No full text
    Attapulgite is a layered silicate with good friction-reduction and self-repairing properties. In order to further improve its tribological properties, the present work mainly focuses on the preparation of attapulgite/La2O3 nanocomposite and study on its tribological behaviors. The tribological properties of mineral lubricating oil (150SN) containing attapulgite/La2O3 nanocomposite were investigated through an Optimal SRV-IV oscillating friction and wear tester. The rubbing surfaces and generated tribofilms were characterized by SEM, EDS, XPS and nanoindentation. Results indicated that the friction-reducing ability and antiwear property of the oil were both remarkably improved by attapulgite/La2O3 nanocomposite. A tribofilm mainly composed of Fe, Fe3C, FeO, Fe2O3 , FeOOH, SiO, SiO2 and organic compound was formed on the rubbing surface under the lubrication of oil with attapulgite/La2O3 nanocomposite. The tribofilm possess excellent self-lubricating ability and mechanical properties, which is responsible for the reduction of friction and wear
    corecore