146 research outputs found

    A mathematical model of cardiovascular system with feedback control

    Get PDF
    A mathematical model of human cardiovascular system is presented in this study. The closed-loop model is composed of twenty compartments which includes the left and right ventricles, and the systemic and pulmonary circulations. Two physiologic feedback control mechanisms, autoregulation of blood flow and baroreceptor reflex regulation of arterial pressure, are incorporated in the model. Autoregulation acts by changing local resistance to blood flow through metabolic and myogenic mechanisms, thereby insuring a match between oxygen supply and demand for any tissue or organ. Baroreceptors act through neural pathways to alter heart rate, contractility and peripheral resistance in order to return sudden changes in blood pressure to a normal set point . Pressure and volume waves in a simulated normal human at rest throughout the systemic circulation were generated. Parameters of the model were set to simulate heart failure in two stages. The effects of autoregulation on the coronary circulation with the changes in ventricular contractility, heart rate and peripheral resistance were studied. The results suggest that the oxygen consumption rate of the coronary circulation is mainly affected by afterload. Maximizing ventricular contractility and peripheral resistance, and minimizing heart rate were shown to improve ventricular coronary vascular reserve

    Innovative local texture descriptors with application to eye detection

    Get PDF
    Local Binary Patterns (LBP), which is one of the well-known texture descriptors, has broad applications in pattern recognition and computer vision. The attractive properties of LBP are its tolerance to illumination variations and its computational simplicity. However, LBP only compares a pixel with those in its own neighborhood and encodes little information about the relationship of the local texture with the features. This dissertation introduces a new Feature Local Binary Patterns (FLBP) texture descriptor that can compare a pixel with those in its own neighborhood as well as in other neighborhoods and encodes the information of both local texture and features. The features encoded in FLBP are broadly defined, such as edges, Gabor wavelet features, and color features. Specifically, a binary image is first derived by extracting feature pixels from a given image, and then a distance vector field is obtained by computing the distance vector between each pixel and its nearest feature pixel defined in the binary image. Based on the distance vector field and the FLBP parameters, the FLBP representation of the given image is derived. The feasibility of the proposed FLBP is demonstrated on eye detection using the BioID and the FERET databases. Experimental results show that the FLBP method significantly improves upon the LBP method in terms of both the eye detection rate and the eye center localization accuracy. As LBP is sensitive to noise especially in near-uniform image regions, Local Ternary Patterns (LTP) was proposed to address this problem by extending LBP to three-valued codes. However, further research reveals that both LTP and LBP achieve similar results for face and facial expression recognition, while LTP has a higher computational cost than LBP. To improve upon LTP, this dissertation introduces another new local texture descriptor: Local Quaternary Patterns (LQP) and its extension, Feature Local Quaternary Patterns (FLQP). LQP encodes four relationships of local texture, and therefore, it includes more information of local texture than the LBP and the LTP. FLQP, which encodes both local and feature information, is expected to perform even better than LQP for texture description and pattern analysis. The LQP and FLQP are applied to eye detection on the BioID database. Experimental results show that both FLQP and LQP achieve better eye detection performance than FLTP, LTP, FLBP and LBP. The FLQP method achieves the highest eye detection rate

    Immunogenetic Study in Chinese Population with Ankylosing Spondylitis: Are There Specific Genes Recently Disclosed?

    Get PDF
    Purpose. Ankylosing spondylitis (AS) is a systemic, autoimmune disease resulting in the destruction of the affected joints. Over the past 5 years, several new genes or genetic regions associated with AS have been identified in the Chinese population. This paper aims to discuss the major findings and related potential mechanisms of these studies in our population. Recent Findings. In recent years, due to the rapid advances in computational genetics and technology, there has been an increasing list of well-validated genes or genetic regions associated with AS susceptibility. So far, several genes or genetic regions have now been reported in the Han ethnic Chinese population, containing the major histocompatibility complex (MHC), ERAP1, IL-23R, 12q12, 2p15, 5q14.3, and so on. Different hypotheses for disease mechanisms have been investigated on the basis of the functional studies of these genes or genetic regions. Summary. This paper tries to summarize the association of several candidate genes with risk for AS in the Han ethnic Chinese population and aims to identify the novel inflammatory pathways and provide potential strategies for better therapies

    Bilevel Traffic Evacuation Model and Algorithm Design for Large-Scale Activities

    Get PDF
    This paper establishes a bilevel planning model with one master and multiple slaves to solve traffic evacuation problems. The minimum evacuation network saturation and shortest evacuation time are used as the objective functions for the upper- and lower-level models, respectively. The optimizing conditions of this model are also analyzed. An improved particle swarm optimization (PSO) method is proposed by introducing an electromagnetism-like mechanism to solve the bilevel model and enhance its convergence efficiency. A case study is carried out using the Nanjing Olympic Sports Center. The results indicate that, for large-scale activities, the average evacuation time of the classic model is shorter but the road saturation distribution is more uneven. Thus, the overall evacuation efficiency of the network is not high. For induced emergencies, the evacuation time of the bilevel planning model is shortened. When the audience arrival rate is increased from 50% to 100%, the evacuation time is shortened from 22% to 35%, indicating that the optimization effect of the bilevel planning model is more effective compared to the classic model. Therefore, the model and algorithm presented in this paper can provide a theoretical basis for the traffic-induced evacuation decision making of large-scale activities

    Evaluation Method for Green Ecological Airports in China Based on Combination Weighting

    Get PDF
    To scientifically and accurately evaluate the status of the development of green airports in China, evaluation methods of green, ecological airports are established in this paper. To address the shortcomings in subjective and objective weighting methods, we propose a combination weighting method based on Spearman’s rank correlation coefficient and evaluation grades based on interval approximation. At the same time, by taking into account resource conservation, environmental friendliness, operation efficiency, and people-oriented service, we propose an evaluation index system and an interval number for each index. Lastly, the theory is applied to five large airports in different regions of China. Analysis of the evaluation results shows that Shanghai Pudong International Airport (PVG) and Guangzhou Baiyun International Airport (CAN) have the highest scores for the resource conservation and environmental friendliness indexes, thus indicating that the development of a green ecological airport is closely related to its passenger transportation scale and economic strength. All considered airports showed the need for upgrading public  service facilities and constructing intelligent equipment. The method proposed in this paper is reasonable  and reliable; therefore, it can provide guidance for the evaluation and construction of green, ecological  airports

    Spectral signatures of the surface anomalous Hall effect in magnetic axion insulators

    Full text link
    The topological surface states of magnetic topological systems, such as Weyl semimetals and axion insulators, are associated with unconventional transport properties such as nonzero or half-quantized surface anomalous Hall effect. Here we study the surface anomalous Hall effect and its spectral signatures in different magnetic topological phases using both model Hamiltonian and first-principles calculations. We demonstrate that by tailoring the magnetization and interlayer electron hopping, a rich three-dimensional topological phase diagram can be established, including three types of topologically distinct insulating phases bridged by Weyl semimetals, and can be directly mapped to realistic materials such as MnBi2Te4/(Bi2Te3)n systems. Among them, we find that the surface anomalous Hall conductivity in the axion-insulator phase is a well-localized quantity either saturated at or oscillating around e2/2h, depending on the magnetic homogeneity. We also discuss the resultant chiral hinge modes embedded inside the side surface bands as the potential experimental signatures for transport measurements. Our study is a significant step forward towards the direct realization of long-sought axion insulators in realistic material systems.Comment: 22 pages, 4 figure

    Efficient Thermal Conductance in Organometallic Perovskite CH3NH3PbI3 Films

    Full text link
    Perovskite-based optoelectronic devices have shown great promise for solar conversion and other optoelectronic applications, but their long-term performance instability is regarded as a major obstacle to their widespread deployment. Previous works have shown that the ultralow thermal conductivity and inefficient heat spreading might put an intrinsic limit on the lifetime of perovskite devices. Here, we report the observation of a remarkably efficient thermal conductance, with conductivity of 11.2 +/- 0.8 W m^-1 K^-1 at room temperature, in densely-packed perovskite CH3NH3PbI3 films, via noncontact time-domain thermal reflectance measurements. The temperature-dependent experiments suggest the important roles of organic cations and structural phase transitions, which are further confirmed by temperature-dependent Raman spectra. The thermal conductivity at room temperature observed here is over one order of magnitude larger than that in the early report, suggesting that perovskite device performance will not be limited by thermal stability

    A Versatile Method of Engineering the Electron Wavefunction of Hybrid Quantum Devices

    Full text link
    With the development of quantum technology, hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the possibility of engineering structures that benefit from the integration of the properties of both materials. However, until now, none of the experiments have reported good control of band alignment at the interface, which determines the strength of S-Sm coupling and the proximitized superconducting gap. Here, we fabricate hybrid devices in a generic way with argon milling to modify the interface while maintaining its high quality. First, after the milling the atomically connected S-Sm interfaces appear, resulting in a large induced gap, as well as the ballistic transport revealed by the multiple Andreev reflections and quantized above-gap conductance plateaus. Second, by comparing transport measurement with Schr\"odinger-Poisson (SP) calculations, we demonstrate that argon milling is capable of varying the band bending strength in the semiconducting wire as the electrons tend to accumulate on the etched surface for longer milling time. Finally, we perform nonlocal measurements on advanced devices to demonstrate the coexistence and tunability of crossed Andreev reflection (CAR) and elastic co-tunneling (ECT) -- key ingredients for building the prototype setup for realization of Kitaev chain and quantum entanglement probing. Such a versatile method, compatible with the standard fabrication process and accompanied by the well-controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid-state systems.Comment: 18 pages, 9 figure

    Managing urban development could halve nitrogen pollution in China

    Get PDF
    Halving nitrogen pollution is crucial for achieving Sustainable Development Goals (SDGs). However, how to reduce nitrogen pollution from multiple sources remains challenging. Here we show that reactive nitrogen (Nr) pollution could be roughly halved by managed urban development in China by 2050, with NH3, NOx and N2O atmospheric emissions declining by 44%, 30% and 33%, respectively, and Nr to water bodies by 53%. While rural-urban migration increases point-source nitrogen emissions in metropolitan areas, it promotes large-scale farming, reducing rural sewage and agricultural non-point-source pollution, potentially improving national air and water quality. An investment of approximately US61billioninwastetreatment,landconsolidation,andlivestockrelocationyieldsanoverallbenefitofUS 61 billion in waste treatment, land consolidation, and livestock relocation yields an overall benefit of US 245 billion. This underscores the feasibility and cost-effectiveness of halving Nr pollution through urbanization, contributing significantly to SDG1 (No poverty), SDG2 (Zero hunger), SDG6 (Clean water), SDG12 (Responsible consumption and production), SDG14 (Climate Action), and so on
    corecore