80 research outputs found

    Coupled-wire construction of static and Floquet second-order topological insulators

    Full text link
    Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed following our approach in experiments by measuring the mean chiral displacements of wavepackets.Comment: 14 pages, 9 figures. Published versio

    Liminal archive : indexing an archive of (articles)

    Get PDF
    Abstract: Please refer to full text to view abstractM.Tech. (Architecture

    Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs\u27 dystrophy

    Get PDF
    Fuchs\u27 endothelial corneal dystrophy (FECD) is the most common repeat expansion disorder. FECD impacts 4% of U.S. population and is the leading indication for corneal transplantation. Most cases are caused by an expanded intronic CUG tract in the TCF4 gene that forms nuclear foci, sequesters splicing factors and impairs splicing. We investigated the sense and antisense RNA landscape at the FECD gene and find that the sense-expanded repeat transcript is the predominant species in patient corneas. In patient tissue, sense foci number were negatively correlated with age and showed no correlation with sex. Each endothelial cell has approximately 2 sense foci and each foci is single RNA molecule. We designed antisense oligonucleotides (ASOs) to target the mutant-repetitive RNA and demonstrated potent inhibition of foci in patient-derived cells. Ex vivo treatment of FECD human corneas effectively inhibits foci and reverses pathological changes in splicing. FECD has the potential to be a model for treating many trinucleotide repeat diseases and targeting the TCF4 expansion with ASOs represents a promising therapeutic strategy to prevent and treat FECD

    The Influence of Education and Scientific Research System on China's Science and Technology Innovation Capability

    Get PDF
    This article outlines their impact on China's technological innovation capabilities from nine aspects including primary and secondary education to university education, the shortcomings of scientific research evaluation system, the forward-looking of educational investment and the rationality of research funding, the negative feedback of the employment market on innovative research, intellectual property protection and incentive mechanism, The basic social system and its incentive mechanism combined with learning and research, the incentive mechanism and cultural atmosphere of enterprises and administrative institutions, and the origin of China's modern education model. The comprehensive analysis shows that changing the status quo of China's lack of innovation is a systematic project. A single ministry cannot complete many specific measures of reform, and must have a national-level top-level design. Through reform, the education and scientific research system has reasonable design and strong self-repairing ability. It is the need of innovation to promote industrial upgrading. Its effectiveness directly determines whether China can cross the middle income trap and the great rejuvenation of the Chinese nation

    Topologically convergent and divergent morphological gray matter networks in early-stage Parkinson's disease with and without mild cognitive impairment

    Get PDF
    Patients with Parkinson's disease with mild cognitive impairment (PD‐M) progress to dementia more frequently than those with normal cognition (PD‐N), but the underlying neurobiology remains unclear. This study aimed to define the specific morphological brain network alterations in PD‐M, and explore their potential diagnostic value. Twenty‐four PD‐M patients, 17 PD‐N patients, and 29 healthy controls (HC) underwent a structural MRI scan. Similarity between interregional gray matter volume distributions was used to construct individual morphological brain networks. These were analyzed using graph theory and network‐based statistics (NBS), and their relationship to neuropsychological tests was assessed. Support vector machine (SVM) was used to perform individual classification. Globally, compared with HC, PD‐M showed increased local efficiency (p = .001) in their morphological networks, while PD‐N showed decreased normalized path length (p = .008). Locally, similar nodal deficits were found in the rectus and lingual gyrus, and cerebellum of both PD groups relative to HC; additionally in PD‐M nodal deficits involved several frontal and parietal regions, correlated with cognitive scores. NBS found that similar connections were involved in the default mode and cerebellar networks of both PD groups (to a greater extent in PD‐M), while PD‐M, but not PD‐N, showed altered connections involving the frontoparietal network. Using connections identified by NBS, SVM allowed discrimination with high accuracy between PD‐N and HC (90%), PD‐M and HC (85%), and between the two PD groups (65%). These results suggest that default mode and cerebellar disruption characterizes PD, more so in PD‐M, whereas frontoparietal disruption has diagnostic potential

    Abnormalities of intrinsic brain activity in essential tremor: A meta-analysis of resting-state functional imaging

    Get PDF
    Neuroimaging studies using a variety of techniques have demonstrated abnormal patterns of spontaneous brain activity in patients with essential tremor (ET). However, the findings are variable and inconsistent, hindering understanding of underlying neuropathology. We conducted a meta‐analysis of whole‐brain resting‐state functional neuroimaging studies in ET compared to healthy controls (HC), using anisotropic effect‐size seed‐based d mapping, to identify the most consistent brain activity alterations and their relation to clinical features. After systematic literature search, we included 13 studies reporting 14 comparisons, describing 286 ET patients and 254 HC. Subgroup analyses were conducted considering medication status, head tremor status, and methodological factors. Brain activity in ET is altered not only in the cerebellum and cerebral motor cortex, but also in nonmotor cortical regions including prefrontal cortex and insula. Most of the results remained unchanged in subgroup analyses of patients with head tremor, medication‐naive patients, studies with statistical threshold correction, and the large subgroup of studies using functional magnetic resonance imaging. These findings not only show consistent and robust abnormalities in specific brain regions but also provide new information on the biology of patient heterogeneity, and thus help to elucidate the pathophysiology of ET

    Case fatality risk of the first pandemic wave of novel coronavirus disease 2019 (COVID-19) in China

    Get PDF
    Objective To assess the case fatality risk (CFR) of COVID-19 in mainland China, stratified by region and clinical category, and estimate key time-to-event intervals. Methods We collected individual information and aggregated data on COVID-19 cases from publicly available official sources from December 29, 2019 to April 17, 2020. We accounted for right-censoring to estimate the CFR and explored the risk factors for mortality. We fitted Weibull, gamma, and lognormal distributions to time-to-event data using maximum-likelihood estimation. Results We analyzed 82,719 laboratory-confirmed cases reported in mainland China, including 4,632 deaths, and 77,029 discharges. The estimated CFR was 5.65% (95%CI: 5.50%-5.81%) nationally, with highest estimate in Wuhan (7.71%), and lowest in provinces outside Hubei (0.86%). The fatality risk among critical patients was 3.6 times that of all patients, and 0.8-10.3 fold higher than that of mild-to-severe patients. Older age (OR 1.14 per year; 95%CI: 1.11-1.16), and being male (OR 1.83; 95%CI: 1.10-3.04) were risk factors for mortality. The time from symptom onset to first healthcare consultation, time from symptom onset to laboratory confirmation, and time from symptom onset to hospitalization were consistently longer for deceased patients than for those who recovered. Conclusions Our CFR estimates based on laboratory-confirmed cases ascertained in mainland China suggest that COVID-19 is more severe than the 2009 H1N1 influenza pandemic in hospitalized patients, particularly in Wuhan. Our study provides a comprehensive picture of the severity of the first wave of the pandemic in China. Our estimates can help inform models and the global response to COVID-19
    corecore