50 research outputs found

    Interfacial regulation of aqueous synthesized metal-semiconductor hetero-nanocrystals

    Get PDF
    Integrating metal and semiconductor components to form metal-semiconductor heterostructures is an attractive strategy to develop nanomaterials for optoelectronic applications, and the rational regulation of their heterointerfaces could effectively influence their charge transfer properties and further determine their performance. Considering the natural large lattice mismatch between metal and semiconductor components, defects and low crystalline heterointerfaces could be easily generated especially for heterostructures with large contacting areas such as core-shell and over quantum-sized nanostructures. The defective interfaces of heterostructures could lead to the undesirable recombination of photo-induced electrons and holes, which would decrease their performances. Based on these issues, the perspective focusing on the most recent progress in the aqueous synthesis of metal-semiconductor heterostructures with emphasis on heterointerface regulation is proposed, especially in the aspect of non-epitaxial growth strategies initiated by cation exchange reaction (CER). The enhanced optoelectronic performance enabled by precise interfacial regulations is also illustrated. We hope this perspective could provide meaningful insights for researchers on nano synthesis and optoelectronic applications

    Characterization of a Novel Megabirnavirus from \u3cem\u3eSclerotinia sclerotiorum\u3c/em\u3e Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus

    Get PDF
    Mycoviruses have been detected in all major groups of filamentous fungi, and their study represents an important branch of virology. Here, we characterized a novel double-stranded RNA (dsRNA) mycovirus, Sclerotinia sclerotiorum megabirnavirus 1 (SsMBV1), in an apparently hypovirulent strain (SX466) of Sclerotinia sclerotiorum. Two similarly sized dsRNA segments (L1- and L2-dsRNA), the genome of SsMBV1, are packaged in rigid spherical particles purified from strain SX466. The full-length cDNA sequence of L1-dsRNA/SsMBV1 comprises two large open reading frames (ORF1 and ORF2), which encode a putative coat protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the RdRp domain clearly indicates that SsMBV1 is related to Rosellinia necatrix megabirnavirus 1 (RnMBV1). L2-dsRNA/SsMBV1 comprises two nonoverlapping ORFs (ORFA and ORFB) encoding two hypothetical proteins with unknown functions. The 5′-terminal regions of L1- and L2-dsRNA/SsMBV1 share strictly conserved sequences and form stable stem-loop structures. Although L2-dsRNA/SsMBV1 is dispensable for replication, genome packaging, and pathogenicity of SsMBV1, it enhances transcript accumulation of L1-dsRNA/SsMBV1 and stability of virus-like particles (VLPs). Interestingly, a conserved papain-like protease domain similar to a multifunctional protein (p29) of Cryphonectria hypovirus 1 was detected in the ORFA-encoded protein of L2-dsRNA/SsMBV1. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer may have occurred from a single-stranded RNA (ssRNA) virus (hypovirus) to a dsRNA virus, SsMBV1. Our results reveal that SsMBV1 has a slight impact on the fundamental biological characteristics of its host regardless of the presence or absence of L2-dsRNA/SsMBV1. IMPORTANCE Mycoviruses are widespread in all major fungal groups, and they possess diverse genomes of mostly ssRNA and dsRNA and, recently, circular ssDNA. Here, we have characterized a novel dsRNA virus (Sclerotinia sclerotiorum megabirnavirus 1 [SsMBV1]) that was isolated from an apparently hypovirulent strain, SX466, of Sclerotinia sclerotiorum. Although SsMBV1 is phylogenetically related to RnMBV1, SsMBV1 is markedly distinct from other reported megabirnaviruses with two features of VLPs and conserved domains. Our results convincingly showed that SsMBV1 is viable in the absence of L2-dsRNA/SsMBV1 (a potential large satellite-like RNA or genuine genomic virus component). More interestingly, we detected a conserved papain-like protease domain that commonly exists in ssRNA viruses, including members of the families Potyviridae and Hypoviridae. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer might have occurred from an ssRNA virus to a dsRNA virus, which may provide new insights into the evolutionary history of dsRNA and ssRNA viruses

    Infection Characteristics of Rice Stripe Mosaic Virus in the Body of the Vector Leafhoppers

    Get PDF
    Rice stripe mosaic virus (RSMV), a novel species of Cytorhabdovirus, is transmitted by the leafhopper Recilia dorsalis in a persistent-propagative manner. In this study, we firstly confirmed that N protein of RSMV is a component of viroplasm and virion in vector culture cells of R. dorsalis. Confocal microscopy revealed that RSMV initially accumulated in epithelial cells of the filter chamber of R. dorsalis, from where it proceeded to the visceral muscles surrounding the filter chamber. Subsequently, RSMV spread quickly throughout the suspensory ligament to the salivary glands. Meanwhile, RSMV spread from the filter chamber to midgut, hindgut, esophagus, hemolymph, and central nervous system. We further observed that RSMV particles displayed as non-enveloped form when propagating in cytoplasm of different tissues, and became enveloped when spread within insect body by electron microscopy. Additionally, we found that the leafhopper Nephotettix virescens was also able to acquire and transmit RSMV. These results clarified the infection characteristics of RSMV in its leafhopper vectors, which will help guide the formulation of RSMV prevention and control strategies

    Nonstationary Process Monitoring Based on Alternating Conditional Expectation and Cointegration Analysis

    No full text
    Traditional multivariate statistical methods, which are often used to monitor stationary processes, are not applicable to nonstationary processes. Cointegration analysis (CA) is considered an effective method to deal with nonstationary variables. If there is a cointegration relationship among the nonstationary series in the system, it indicates that a stable long-term dynamic equilibrium relationship exists among these variables. However, due to the complexity of modern industrial processes, there are nonlinear relations between variables, which are not considered by the traditional linear cointegration theory. Alternating conditional expectation (ACE) can perform nonlinear transformation on these variables to maximize the linear correlation of the transformed variables. It will be helpful to deal with the nonlinear relations by modeling with transformed variables. In this work, a new monitoring strategy based on ACE and CA is proposed. The data are first transformed by an ACE algorithm, CA is performed after that, and then monitoring statistics are calculated to determine whether the system is faulty. The strategy is applied to the monitoring of a simulation case and a catalytic reforming unit in a petrochemical company. The results show that the strategy can realize the monitoring of nonstationary process, with a higher fault detection rate and a lower false alarm rate compared with the monitoring strategy based on traditional cointegration theory

    Uninterrupted Expression of CmSIT1 in a Sclerotial Parasite Coniothyrium minitans Leads to Reduced Growth and Enhanced Antifungal Ability

    No full text
    Coniothyrium minitans is an important mycoparasite of Sclerotinia sclerotiorum. In addition, it also produces small amounts of antifungal substances. ZS-1TN1812, an abnormal mutant, was originally screened from a T-DNA insertional library. This mutant showed abnormal growth phenotype and could significantly inhibit the growth of S. sclerotiorum when dual-cultured on a PDA plate. When spraying the filtrate of ZS-1TN1812 on the leaves of rapeseed, S. sclerotiorum infection was significantly inhibited, suggesting that the antifungal substances produced by this mutant were effective on rapeseed leaves. The thermo-tolerant antifungal substances could specifically suppress the growth of S. sclerotiorum, but could not significantly suppress the growth of another fungus, Colletotrichum higginsianum. However, C. higginsianum was more sensitive to proteinous antibiotics than S. sclerotiorum. The T-DNA insertion in ZS-1TN1812 activated the expression of CmSIT1, a gene involved in siderophore-mediated iron transport. It was also determined that mutant ZS-1TN1812 produced hypha with high iron levels. In the wild-type strain ZS-1, CmSIT1 was expressed only when in contact with S. sclerotiorum, and consistent overexpression of CmSIT1 showed similar phenotypes as ZS-1TN1812. Therefore, activated expression of CmSIT1 leads to the enhanced antifungal ability, and CmSIT1 is a potential gene for improving the control ability of C. minitans
    corecore