28 research outputs found

    Design and application of coal mine intelligent warehousing and logistics transportation management system based on Internet of Things

    No full text
    In order to slove the problems of backward technology and low efficiency existed in warehousing and logistics transportation management of coal enterprises, a coal mine intelligent warehousing and logistics transportation management system based on Internet of Things was designed. The system adopts technologies of Internet of Things and RFID, and achieves precise management of cargo warehousing, increases storage capacity, warehouse utilization and speed of entry-and-exit of cargoes. Meanwhile, the system can realize closed-loop management of distribution, transportation and recycling of goods and materials in the whole process

    EGTA reduces the inflorescence stem mechanical strength of herbaceous peony by modifying secondary wall biosynthesis

    No full text
    Cell biology: calcium makes peonies stand tall Calcium may hold the key to growing peonies with stronger, straighter stems, by enabling the construction of reinforced cell walls, which impart structural support. Peonies are a popular kind of cut flowers, and those with straight stems are more sought after. Although recent studies have hinted at the importance of calcium ions, the mechanism was unclear. To investigate, Jun Tao at Yangzhou University in Jiangsu, China, and colleagues treated herbaceous peonies with ethyl glycol tetraacetic acid (EGTA), a chemical that binds to and removes calcium ions. This resulted in the reduced deposition of a structural protein called lignin in the walls of xylem cells and more pliable stems. Further analysis revealed altered expression of 43 proteins, including those involved in calcium-ion sensing and construction of ‘secondary’ walls in xylem cells within the stem

    Predicting Suitable Environments and Potential Occurrences for Cinnamomum camphora (Linn.) Presl.

    No full text
    Global climate change has created a major threat to biodiversity. However, little is known about the habitat and distribution characteristics of Cinnamomum camphora (Linn.) Presl., an evergreen tree growing in tropical and subtropical Asia, as well as the factors influencing its distribution. The present study employed Maxent and a GARP to establish a potential distribution model for the target species based on 182 known occurrence sites and 17 environmental variables. The results indicate that Maxent performed better than GARP. The mean diurnal temperature range, annual precipitation, mean air temperature of driest quarter and sunshine duration in growing season were important environmental factors influencing the distribution of C. camphora and contributed 40.9%, 23.0%, 10.5%, and 7.2% to the variation in the model contribution, respectively. Based on the models, the subtropical and temperate regions of Eastern China, where the species has been recorded, had a high suitability for this species. Under each climate change scenario, the potential geographical distribution shifted farther north and toward a higher elevation. The predicted spatial and temporal distribution patterns of this species can provide guidance for the development strategies for forest management and species protection

    Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching

    No full text
    Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application

    WRKY Transcription Factor Response to High-Temperature Stress

    No full text
    Plant growth and development are closely related to the environment, and high-temperature stress is an important environmental factor that affects these processes. WRKY transcription factors (TFs) play important roles in plant responses to high-temperature stress. WRKY TFs can bind to the W-box cis-acting elements of target gene promoters, thereby regulating the expression of multiple types of target genes and participating in multiple signaling pathways in plants. A number of studies have shown the important biological functions and working mechanisms of WRKY TFs in plant responses to high temperature. However, there are few reviews that summarize the research progress on this topic. To fully understand the role of WRKY TFs in the response to high temperature, this paper reviews the structure and regulatory mechanism of WRKY TFs, as well as the related signaling pathways that regulate plant growth under high-temperature stress, which have been described in recent years, and this paper provides references for the further exploration of the molecular mechanisms underlying plant tolerance to high temperature

    Interpreting Deep Learning-Based Networking Systems

    No full text

    Integration of Transcriptome, Proteome, and Metabolome Provides Insights into How Calcium Enhances the Mechanical Strength of Herbaceous Peony Inflorescence Stems

    No full text
    Weak stem mechanical strength severely restrains cut flowers quality and stem weakness can be alleviated by calcium (Ca) treatment, but the mechanisms underlying Ca-mediated enhancement of stem mechanical strength remain largely unknown. In this study, we performed a comparative transcriptomic, proteomic, and metabolomic analysis of herbaceous peony (Paeonia lactiflora Pall.) inflorescence stems treated with nanometer Ca carbonate (Nano-CaCO3). In total, 2643 differentially expressed genes (DEGs) and 892 differentially expressed proteins (DEPs) were detected between the Control and nano-CaCO3 treatment. Among the 892 DEPs, 152 were coregulated at both the proteomic and transcriptomic levels, and 24 DEPs related to the secondary cell wall were involved in signal transduction, energy metabolism, carbohydrate metabolism and lignin biosynthesis, most of which were upregulated after nano-CaCO3 treatment during the development of inflorescence stems. Among these four pathways, numerous differentially expressed metabolites (DEMs) related to lignin biosynthesis were identified. Furthermore, structural observations revealed the thickening of the sclerenchyma cell walls, and the main wall constitutive component lignin accumulated significantly in response to nano-CaCO3 treatment, thereby indicating that Ca can enhance the mechanical strength of the inflorescence stems by increasing the lignin accumulation. These results provided insights into how Ca treatment enhances the mechanical strength of inflorescence stems in P. lactiflora

    Analysis and Functional Verification of <i>PlPM19L</i> Gene Associated with Drought-Resistance in <i>Paeonia lactiflora</i> Pall.

    No full text
    The herbaceous peony (Paeonia lactiflora Pall.) is widely cultivated as an ornamental, medicinal and edible plant in China. Drought stress can seriously affect the growth of herbaceous peony and reduce its quality. In our previous research, a significantly differentially expressed gene, PM19L, was obtained in herbaceous peony under drought stress based on transcriptome analysis, but little is known about its function. In this study, the first PM19L that was isolated in herbaceous peony was comprised of 910 bp, and was designated as PlPM19L (OP480984). It had a complete open reading frame of 537 bp and encoded a 178-amino acid protein with a molecular weight of 18.95 kDa, which was located in the membrane. When PlPM19L was transferred into tobacco, the transgenic plants had enhanced tolerance to drought stress, potentially due to the increase in the abscisic acid (ABA) content and the reduction in the level of hydrogen peroxide (H2O2). In addition, the enhanced ability to scavenge H2O2 under drought stress led to improvements in the enzyme activity and the potential photosynthetic capacity. These results combined suggest that PlPM19L is a key factor to conferring drought stress tolerance in herbaceous peony and provide a scientific theoretical basis for the following improvement in the drought resistance of herbaceous peony and other plants through genetic engineering technology
    corecore