19 research outputs found
Challenges of computer-assisted orthognathic surgery in clinical application
After years of development, the advantages of computer-assisted orthognathic surgery have been widely recognized. However, the clinical application of this technology is challenging. Each step may generate errors from data acquisition, computer-assisted diagnosis, and computer-assisted surgical design, causing errors to be transferred from the virtual surgical plan to the operation. The accumulation and amplification of errors will affect the final surgical effect. Currently, digital devices, such as intraoral scanners, are being explored for error control, utilizing automation methods and algorithms, and implementing personalized bone positioning methods. Moreover, there are still many problems that have not been fully resolved, such as precise simulation of postoperative soft tissue, functional assessment of mandibular movement, and absorbable internal fixation materials. Fully understanding computer-assisted orthognathic surgery's limitations could provide direction for optimizing existing methods while helping clinicians avoid risks and maximize its advantages to achieve the best outcome. Many emerging and cutting-edge technologies, such as personalized titanium plates, artificial intelligence, and surgical robots, will further promote the development of this discipline. We can expect future optimization of digital orthognathic surgical technology by innovations in automation, intelligence, and personalization
Lattice Boltzmann simulation of flow and heat transfer in random porous media constructed by simulated annealing algorithm
In this article, the lattice Boltzmann (LB) method for transport phenomena is combined with the simulated annealing (SA) algorithm for digitized porous-medium construction to study flow and heat transfer in random porous media. Importantly, in contrast to previous studies which simplify porous media as arrays of regularly shaped objects or effective pore networks, the LB + SA method in this article can model statistically meaningful random porous structures in irregular morphology, and simulate pore-scale transport processes inside them. Pore-scale isothermal flow and heat conduction in a set of constructed random porous media characterized by statistical descriptors were then simulated through use of the LB + SA method. The corresponding averages over the computational volumes and the related effective transport properties were also computed based on these pore scale numerical results. Good agreement between the numerical results and theoretical predictions or experimental data on the representative elementary volume scale was found. The numerical simulations in this article demonstrate combination of the LB method with the SA algorithm is a viable and powerful numerical strategy for simulating transport phenomena in random porous media in complex geometries
Neutrino Physics with JUNO
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe
Determination of Leaf pH without Grinding the Sample: Is It Closer to the Reality?
This study recommends a non-grinding measurement method of leaf pH which can reduce the destructive interference to the measured fresh-leaf pH values. To verify the accuracy of this method, we measured leaf pH with the non-grinding and grinding method and further assessed the dilution effect on leaf pH in the grinding process. Compared with the non-grinding method, the grinding method significantly increased the measured pH value; leaf pH increased with decreasing leaf–water ratio in the procedure of the grinding method, but gradually stabilized. The grinding effects of severe physical damage and thereafter oxidization of leaf samples, and the dilution effects according to the Debye–Hückel limiting law and acid-base ionization theory, may both contribute to the increased leaf pH measured with the grinding method. Thus, leaf pH measured with the non-grinding method was expected to be much closer to those of leaf sap in vivo and be more suitable to indicating the dynamic variation or instant response of leaf pH to the environmental changes. Finally, considering that non-significant difference had been proved in the measured leaf pH between dried, frozen, refrigerated, and fresh ground samples, a conversion equation was provided to facilitate mutual conversion of the results with non-grinding fresh samples (y) against those with grinding dried samples (as representative) (x): y = 1.097x − 0.722
Targeting 14-3-3ζ by a small-molecule compound AI-34 maintains epithelial barrier integrity and alleviates colitis in mice via stabilizing β-catenin
Aberrant intestinal epithelial barrier function is the primary pathology of Ulcerative colitis (UC), making it a desirable drug target. In this study, our small-molecule compound AI-34 exerted a significant protective effect in an LPS-induced epithelial barrier injury model. In vitro, AI-34 treatment significantly decreased cell permeability, increased transmembrane resistance, and maintained the junctional protein (ZO-1 and E-cadherin) levels in monolayer cells. Using the LiP-small molecule mapping approach (LiP-SMap), we demonstrated that AI-34 binds to 14-3-3ζ. AI-34 promoted the interaction between 14-3-3ζ and β-catenin, decreasing the ubiquitination of β-catenin and thus maintaining intestinal epithelial barrier function. Finally, AI-34 triggered the stabilization of β-catenin mediated by 14-3-3ζ, provoking a significant improvement in the DSS-induced colitis model. Our findings suggest that AI-34 may be a promising candidate for UC treatment