253 research outputs found

    Many-body effects in nonlinear optical responses of 2D layered semiconductors

    Get PDF
    We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and free carrier induced band gap renormalization. The exciton-exciton interaction results in a resonance blue shift which lasts for the exciton lifetime (several ps), while the band gap renormalization manifests as a resonance red shift with several tens ps lifetime. Our model based on the many-body interactions for the nonlinear optical susceptibility fits well the experimental observations. The power dependence of the spectra shows that with the increase of pump power, the exciton population increases linearly and then saturates, while the free carrier density increases superlinearly, implying that exciton Auger recombination could be the origin of these free carriers. Our model demonstrates a simple but efficient method for quantitatively analyzing the spectra, and indicates the important role of Coulomb interactions in nonlinear optical responses of such 2D materials

    Protecting Memories against Soft Errors: The Case for Customizable Error Correction Codes

    Get PDF
    As technology scales, radiation induced soft errors create more complex error patterns in memories with a single particle corrupting several bits. This poses a challenge to the Error Correction Codes (ECCs) traditionally used to protect memories that can correct only single bit errors. During the last decade, a number of codes have been developed to correct the emerging error patterns, focusing initially on double adjacent errors and later on three bit burst errors. However, as the memory cells get smaller and smaller, the error patterns created by radiation will continue to change and thus new codes will be needed. In addition, the memory layout and the technology used may also make some patterns more likely than others. For example, in some memories, there maybe elements that separate blocks of bits in a word, making errors that affect two blocks less likely. Finally, for a given memory, depending on the data stored, some error patterns may be more critical than others. For example, if numbers are stored in the memory, in most cases, errors on the more significant bits have a larger impact. Therefore, for a given memory and application, to achieve optimal protection, we would like to have a code that corrects a given set of patterns. This is not possible today as there is a limited number of code choices available in terms of correctable error patterns and word lengths. However, most of the codes used to protect memories are linear block codes that have a regular structure and which design can be automated. In this paper, we propose the automation of error correction code design for memory protection. To that end, we introduce a software tool that given a word length and the error patterns that need to be corrected, produces a linear block code described by its parity check matrix and also the bit placement. The benefits of this automated design approach are illustrated with several case studies. Finally, the tool is made available so that designers can easily produce custom error correction codes for their specific needs.Jiaqiang Li and Liyi Xiao would like to acknowledge the support of the Fundamental Research Funds for the Central Universities (Grant No. HIT.KISTP.201404), Harbin science and innovation research special fund (2015RAXXJ003), and Special found for development of Shenzhen strategic emerging industries (JCYJ20150625142543456). Pedro Reviriego would like to acknowledge the support of the TEXEO project TEC2016-80339-R funded by the Spanish Ministry of Economy and Competitivity and of the Madrid Community research project TAPIR-CM Grant No. P2018/TCS-4496

    Study on the oasification process and its effects on soil particle distribution in the south rim of the Tarim Basin, China in recent 30 years

    Get PDF
    AbstractOasification is an important geography process in arid areas, although little research attention has been paid to the process compared to desertification. In fact, studying oasification not only directly reveals its effects on the environment, but can also uncover causes of desertification through examination of oasification causes and processes. In this study, oases located on the south rim of Tarim Basin in Xinjiang, China, were selected as a regional study area. For assessing changes in oases area over the past 30years, four images taken in September in 1977, 1992, 2000 and 2010 were used. To further investigate the effects of oasification on the environment, the Cele Oasis was specifically selected as a representative study area, and soil particle-size distributions (PSD) were analyzed. The results indicated that the oasification process was unmistakable and should receive more attention in the southern marginal zone of the Tarim Basin. In addition, the results also revealed that oasification can have positive effects on the soil environment. In terms of management implications, it is essential that farmland remain in continuous use after reclamation; otherwise, reclamation will weaken oasification and intensify desertification

    Electrical Control of Two-Dimensional Neutral and Charged Excitons in a Monolayer Semiconductor

    Get PDF
    Monolayer group VI transition metal dichalcogenides have recently emerged as semiconducting alternatives to graphene in which the true two-dimensionality (2D) is expected to illuminate new semiconducting physics. Here we investigate excitons and trions (their singly charged counterparts) which have thus far been challenging to generate and control in the ultimate 2D limit. Utilizing high quality monolayer molybdenum diselenide (MoSe2), we report the unambiguous observation and electrostatic tunability of charging effects in positively charged (X+), neutral (Xo), and negatively charged (X-) excitons in field effect transistors via photoluminescence. The trion charging energy is large (30 meV), enhanced by strong confinement and heavy effective masses, while the linewidth is narrow (5 meV) at temperatures below 55 K. This is greater spectral contrast than in any known quasi-2D system. We also find the charging energies for X+ and X- to be nearly identical implying the same effective mass for electrons and holes.Comment: 11 pages main text with 4 figures + 7 pages supplemental material
    • …
    corecore