493 research outputs found

    EviPrompt: A Training-Free Evidential Prompt Generation Method for Segment Anything Model in Medical Images

    Full text link
    Medical image segmentation has immense clinical applicability but remains a challenge despite advancements in deep learning. The Segment Anything Model (SAM) exhibits potential in this field, yet the requirement for expertise intervention and the domain gap between natural and medical images poses significant obstacles. This paper introduces a novel training-free evidential prompt generation method named EviPrompt to overcome these issues. The proposed method, built on the inherent similarities within medical images, requires only a single reference image-annotation pair, making it a training-free solution that significantly reduces the need for extensive labeling and computational resources. First, to automatically generate prompts for SAM in medical images, we introduce an evidential method based on uncertainty estimation without the interaction of clinical experts. Then, we incorporate the human prior into the prompts, which is vital for alleviating the domain gap between natural and medical images and enhancing the applicability and usefulness of SAM in medical scenarios. EviPrompt represents an efficient and robust approach to medical image segmentation, with evaluations across a broad range of tasks and modalities confirming its efficacy

    Semi‐supervised joint learning for longitudinal clinical events classification using neural network models

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163377/2/sta4305.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163377/1/sta4305_am.pd

    Efficiently Hardening SGX Enclaves against Memory Access Pattern Attacks via Dynamic Program Partitioning

    Full text link
    Intel SGX is known to be vulnerable to a class of practical attacks exploiting memory access pattern side-channels, notably page-fault attacks and cache timing attacks. A promising hardening scheme is to wrap applications in hardware transactions, enabled by Intel TSX, that return control to the software upon unexpected cache misses and interruptions so that the existing side-channel attacks exploiting these micro-architectural events can be detected and mitigated. However, existing hardening schemes scale only to small-data computation, with a typical working set smaller than one or few times (e.g., 88 times) of a CPU data cache. This work tackles the data scalability and performance efficiency of security hardening schemes of Intel SGX enclaves against memory-access pattern side channels. The key insight is that the size of TSX transactions in the target computation is critical, both performance- and security-wise. Unlike the existing designs, this work dynamically partitions target computations to enlarge transactions while avoiding aborts, leading to lower performance overhead and improved side-channel security. We materialize the dynamic partitioning scheme and build a C++ library to monitor and model cache utilization at runtime. We further build a data analytical system using the library and implement various external oblivious algorithms. Performance evaluation shows that our work can effectively increase transaction size and reduce the execution time by up to two orders of magnitude compared with the state-of-the-art solutions

    Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain Semantic Segmentation

    Full text link
    The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing the scalability and performance. In this paper, we propose a hard-aware instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality and diversity of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. We further enrich the hard class pseudo-labels with inter-image information through a skillfully designed hard-aware pseudo-label augmentation. Besides, we propose the region-adaptive regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. For the non-pseudo-label region, consistency constraint is also constructed to introduce stronger supervision signals during model optimization. Our method is so concise and efficient that it is easy to be generalized to other UDA methods. Experiments on GTA5 to Cityscapes, SYNTHIA to Cityscapes, and Cityscapes to Oxford RobotCar demonstrate the superior performance of our approach compared with the state-of-the-art methods.Comment: arXiv admin note: text overlap with arXiv:2008.1219
    corecore