87 research outputs found

    Ishibashi States, Topological Orders with Boundaries and Topological Entanglement Entropy

    Full text link
    In this paper, we study gapped edges/interfaces in a 2+1 dimensional bosonic topological order and investigate how the topological entanglement entropy is sensitive to them. We present a detailed analysis of the Ishibashi states describing these edges/interfaces making use of the physics of anyon condensation in the context of Abelian Chern-Simons theory, which is then generalized to more non-Abelian theories whose edge RCFTs are known. Then we apply these results to computing the entanglement entropy of different topological orders. We consider cases where the system resides on a cylinder with gapped boundaries and that the entanglement cut is parallel to the boundary. We also consider cases where the entanglement cut coincides with the interface on a cylinder. In either cases, we find that the topological entanglement entropy is determined by the anyon condensation pattern that characterizes the interface/boundary. We note that conditions are imposed on some non-universal parameters in the edge theory to ensure existence of the conformal interface, analogous to requiring rational ratios of radii of compact bosons.Comment: 38 pages, 5 figure; Added referenc

    ESTAS: Effective and Stable Trojan Attacks in Self-supervised Encoders with One Target Unlabelled Sample

    Full text link
    Emerging self-supervised learning (SSL) has become a popular image representation encoding method to obviate the reliance on labeled data and learn rich representations from large-scale, ubiquitous unlabelled data. Then one can train a downstream classifier on top of the pre-trained SSL image encoder with few or no labeled downstream data. Although extensive works show that SSL has achieved remarkable and competitive performance on different downstream tasks, its security concerns, e.g, Trojan attacks in SSL encoders, are still not well-studied. In this work, we present a novel Trojan Attack method, denoted by ESTAS, that can enable an effective and stable attack in SSL encoders with only one target unlabeled sample. In particular, we propose consistent trigger poisoning and cascade optimization in ESTAS to improve attack efficacy and model accuracy, and eliminate the expensive target-class data sample extraction from large-scale disordered unlabelled data. Our substantial experiments on multiple datasets show that ESTAS stably achieves > 99% attacks success rate (ASR) with one target-class sample. Compared to prior works, ESTAS attains > 30% ASR increase and > 8.3% accuracy improvement on average.Comment: 10 pages, 7 figures, 6 table

    LayoutDiffusion: Improving Graphic Layout Generation by Discrete Diffusion Probabilistic Models

    Full text link
    Creating graphic layouts is a fundamental step in graphic designs. In this work, we present a novel generative model named LayoutDiffusion for automatic layout generation. As layout is typically represented as a sequence of discrete tokens, LayoutDiffusion models layout generation as a discrete denoising diffusion process. It learns to reverse a mild forward process, in which layouts become increasingly chaotic with the growth of forward steps and layouts in the neighboring steps do not differ too much. Designing such a mild forward process is however very challenging as layout has both categorical attributes and ordinal attributes. To tackle the challenge, we summarize three critical factors for achieving a mild forward process for the layout, i.e., legality, coordinate proximity and type disruption. Based on the factors, we propose a block-wise transition matrix coupled with a piece-wise linear noise schedule. Experiments on RICO and PubLayNet datasets show that LayoutDiffusion outperforms state-of-the-art approaches significantly. Moreover, it enables two conditional layout generation tasks in a plug-and-play manner without re-training and achieves better performance than existing methods.Comment: Accepted by ICCV2023, project page: https://layoutdiffusion.github.i

    Audit and Improve Robustness of Private Neural Networks on Encrypted Data

    Full text link
    Performing neural network inference on encrypted data without decryption is one popular method to enable privacy-preserving neural networks (PNet) as a service. Compared with regular neural networks deployed for machine-learning-as-a-service, PNet requires additional encoding, e.g., quantized-precision numbers, and polynomial activation. Encrypted input also introduces novel challenges such as adversarial robustness and security. To the best of our knowledge, we are the first to study questions including (i) Whether PNet is more robust against adversarial inputs than regular neural networks? (ii) How to design a robust PNet given the encrypted input without decryption? We propose PNet-Attack to generate black-box adversarial examples that can successfully attack PNet in both target and untarget manners. The attack results show that PNet robustness against adversarial inputs needs to be improved. This is not a trivial task because the PNet model owner does not have access to the plaintext of the input values, which prevents the application of existing detection and defense methods such as input tuning, model normalization, and adversarial training. To tackle this challenge, we propose a new fast and accurate noise insertion method, called RPNet, to design Robust and Private Neural Networks. Our comprehensive experiments show that PNet-Attack reduces at least 2.5×2.5\times queries than prior works. We theoretically analyze our RPNet methods and demonstrate that RPNet can decrease ∼91.88%\sim 91.88\% attack success rate.Comment: 10 pages, 10 figure

    TrojLLM: A Black-box Trojan Prompt Attack on Large Language Models

    Full text link
    Large Language Models (LLMs) are progressively being utilized as machine learning services and interface tools for various applications. However, the security implications of LLMs, particularly in relation to adversarial and Trojan attacks, remain insufficiently examined. In this paper, we propose TrojLLM, an automatic and black-box framework to effectively generate universal and stealthy triggers. When these triggers are incorporated into the input data, the LLMs' outputs can be maliciously manipulated. Moreover, the framework also supports embedding Trojans within discrete prompts, enhancing the overall effectiveness and precision of the triggers' attacks. Specifically, we propose a trigger discovery algorithm for generating universal triggers for various inputs by querying victim LLM-based APIs using few-shot data samples. Furthermore, we introduce a novel progressive Trojan poisoning algorithm designed to generate poisoned prompts that retain efficacy and transferability across a diverse range of models. Our experiments and results demonstrate TrojLLM's capacity to effectively insert Trojans into text prompts in real-world black-box LLM APIs including GPT-3.5 and GPT-4, while maintaining exceptional performance on clean test sets. Our work sheds light on the potential security risks in current models and offers a potential defensive approach. The source code of TrojLLM is available at https://github.com/UCF-ML-Research/TrojLLM.Comment: Accepted by NeurIPS'2

    SSL-Cleanse: Trojan Detection and Mitigation in Self-Supervised Learning

    Full text link
    Self-supervised learning (SSL) is a prevalent approach for encoding data representations. Using a pre-trained SSL image encoder and subsequently training a downstream classifier, impressive performance can be achieved on various tasks with very little labeled data. The growing adoption of SSL has led to an increase in security research on SSL encoders and associated Trojan attacks. Trojan attacks embedded in SSL encoders can operate covertly, spreading across multiple users and devices. The presence of backdoor behavior in Trojaned encoders can inadvertently be inherited by downstream classifiers, making it even more difficult to detect and mitigate the threat. Although current Trojan detection methods in supervised learning can potentially safeguard SSL downstream classifiers, identifying and addressing triggers in the SSL encoder before its widespread dissemination is a challenging task. This challenge arises because downstream tasks might be unknown, dataset labels may be unavailable, and the original unlbeled training dataset might be inaccessible during Trojan detection in SSL encoders. We introduce SSL-Cleanse as a solution to identify and mitigate backdoor threats in SSL encoders. We evaluated SSL-Cleanse on various datasets using 1200 encoders, achieving an average detection success rate of 82.2% on ImageNet-100. After mitigating backdoors, on average, backdoored encoders achieve 0.3% attack success rate without great accuracy loss, proving the effectiveness of SSL-Cleanse.Comment: 9 pages, 6 figures, 4 table
    • …
    corecore