3 research outputs found

    Erosion Process and Temporal Variations in the Soil Surface Roughness of Spoil Heaps under Multi-Day Rainfall Simulation

    No full text
    The extensive artificially accelerated erosion of spoil heaps on newly engineered landforms is a key ecological management point requiring better understanding. Soil surface roughness is a crucial factor influencing erosion processes; however, study on spoil heap erosion with a view of surface roughness is lacking. This study investigated the erosion processes and the spatiotemporal variation of surface roughness on spoil heaps, and then, analyzed how the roughness affected the hydrological and sediment yield characteristics. Sequences of four artificial rainstorms with constant rainfall intensity (90 mm/h) were applied to cone-shaped spoil heaps (ground radius 3.5 m, height 2.3 m) of a loess soil containing 30 mass percent rock fragments. The surface elevation was sampled by a laser scanner. For the surface roughness indicators, the root mean square height (rmsh) and the correlation length (cl) increased sharply during the first rainfall event, and in the last three rainfall events, rmsh increased slightly and cl showed a relative decrease. The initial rmsh/cl of the whole slope surface ranged from 0.063 to 0.135, and increased with the rainfall sequence, thus, indicating that the spoil heap surface became rougher. Increasing soil roughness in the rainfall sequence delayed the initial runoff time and increased the runoff yield. The average runoff coefficient of the spoil heaps was 0.658. The average erosion rate of each rainfall event can be simulated by a regression equation of the corresponding average runoff rate and median cl (R-square of 0.816). Soil slumping with an average volume of 0.014 m3 occurred in the first two rainfall events, thus, significantly changing the roughness and peak instant erosion rate. Together, the results revealed the effects of surface roughness on the erosion of spoil heaps and would provide a useful reference for soil loss prediction and control

    Influence of reservoir impoundment on rainfall erosivity in the Three Gorges Reservoir region of China

    No full text
    New dammed reservoirs are expected to have a significant effect on the regional hydrocycle, but the detailed patterns may not be well understood. Regional climate change is likely to cause soil erosion uncertainty by affecting rainfall erosivity. In the present study, local precipitation and rainfall erosivity were investigated to determine the impounding influence of the Three Gorges Reservoir. Daily erosive precipitation, from 1980 to 2020, was categorized into four intensity levels (light, moderate, heavy, and very heavy), as well as extreme rainfall, to understand their contribution to erosivity. It was found that the impoundment significantly affected local precipitation, with both heavy precipitation and the relative erosivity showing a substantial declining trend (Sen's slope = 2.141, p < 0.05). The Mann–Kendall test indicated an abrupt change point around the year 2002, evidencing the effect of the reservoir impoundment (since 2003). Reservoir impoundment redistributed the intensity levels of erosive precipitation, leading to a 24.3% decrease in the erosivity of heavy precipitation and an 8.2% increase in the moderate category. The unimodal distribution of monthly precipitation was altered to a bimodal distribution with peaks in July and September, resulting in a longer but lower-risky erosion period of high concern. The fluctuations of Rx1day and Rx5day were obviously flattened after impoundment, with a 54.2% peak reduction in relative erosivity on average. Results indicated that heavy rainfall (including extreme rainfall) was reduced, and annual precipitation and erosivity both had a more even seasonal distribution following reservoir impoundment. HIGHLIGHTS The Three Gorges Reservoir impoundment significantly affected local precipitation.; The abrupt change point (Mann–Kendall test) was around the year 2002.; The heavy precipitation and the relative erosivity both substantially declined.; The monthly precipitation distribution was altered from unimodal to bimodal.; The interannual fluctuations of extreme rainfall were significantly reduced.
    corecore