7,260 research outputs found

    Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections

    Full text link
    In this paper, we propose a very deep fully convolutional encoding-decoding framework for image restoration such as denoising and super-resolution. The network is composed of multiple layers of convolution and de-convolution operators, learning end-to-end mappings from corrupted images to the original ones. The convolutional layers act as the feature extractor, which capture the abstraction of image contents while eliminating noises/corruptions. De-convolutional layers are then used to recover the image details. We propose to symmetrically link convolutional and de-convolutional layers with skip-layer connections, with which the training converges much faster and attains a higher-quality local optimum. First, The skip connections allow the signal to be back-propagated to bottom layers directly, and thus tackles the problem of gradient vanishing, making training deep networks easier and achieving restoration performance gains consequently. Second, these skip connections pass image details from convolutional layers to de-convolutional layers, which is beneficial in recovering the original image. Significantly, with the large capacity, we can handle different levels of noises using a single model. Experimental results show that our network achieves better performance than all previously reported state-of-the-art methods.Comment: Accepted to Proc. Advances in Neural Information Processing Systems (NIPS'16). Content of the final version may be slightly different. Extended version is available at http://arxiv.org/abs/1606.0892

    Neutron Density Distributions of Neutron-Rich Nuclei Studied with the Isobaric Yield Ratio Difference

    Full text link
    The isobaric yield ratio difference (IBD) between two reactions of similar experimental setups is found to be sensitive to nuclear density differences between projectiles. In this article, the IBD probe is used to study the density variation in neutron-rich 48^{48}Ca. By adjusting diffuseness in the neutron density distribution, three different neutron density distributions of 48^{48}Ca are obtained. The yields of fragments in the 80AA MeV 40,48^{40, 48}Ca + 12^{12}C reactions are calculated by using a modified statistical abrasion-ablation model. It is found that the IBD results obtained from the prefragments are sensitive to the density distribution of the projectile, while the IBD results from the final fragments are less sensitive to the density distribution of the projectile.Comment: 3 figure

    Quasi-Rip: A New Type of Rip Model without Cosmic Doomsday

    Full text link
    The fate of our universe is an unceasing topic of cosmology and the human being. The discovery of the current accelerated expansion of the universe significantly changed our view of the fate of the universe. Recently, some interesting scenarios concerning the fate of the universe attracted much attention in the community, namely the so-called "Little Rip" and "Pseudo-Rip". It is worth noting that all the Big Rip, Little Rip and Pseudo-Rip arise from the assumption that the dark energy density ρ(a)\rho(a) is monotonically increasing. In the present work, we are interested to investigate what will happen if this assumption is broken, and then propose a so-called "Quasi-Rip" scenario, which is driven by a type of quintom dark energy. In this work, we consider an explicit model of Quasi-Rip in detail. We show that Quasi-Rip has an unique feature different from Big Rip, Little Rip and Pseudo-Rip. Our universe has a chance to be rebuilt from the ashes after the terrible rip. This might be the last hope in the "hopeless" rip.Comment: 9 pages, 2 figures, 1 table, revtex4; v2: discussions added, Phys. Rev. D in press; v3: published versio
    corecore