49 research outputs found
Auxin depletion from leaf primordia contributes to organ patterning
Stem cells are responsible for organogenesis, but it is largely unknown whether and how information from stem cells acts to direct organ patterning after organ primordia are formed. It has long been proposed that the stem cells at the plant shoot apex produce a signal, which promotes leaf adaxial-abaxial (dorsoventral) patterning. Here we show the existence of a transient low auxin zone in the adaxial domain of early leaf primordia. We also demonstrate that this adaxial low auxin domain contributes to leaf adaxial-abaxial patterning. The auxin signal is mediated by the auxin-responsive transcription factor MONOPTEROS (MP), whose constitutive activation in the adaxial domain promotes abaxial cell fate. Furthermore, we show that auxin flow from emerging leaf primordia to the shoot apical meristem establishes the low auxin zone, and that this auxin flow contributes to leaf polarity. Our results provide an explanation for the hypothetical meristem-derived leaf polarity signal. Opposite to the original proposal, instead of a signal derived from the meristem, we show that a signaling molecule is departing from the primordium to the meristem to promote robustness in leaf patterning
LncRNA-84277 is involved in chronic pain-related depressive behaviors through miR-128-3p/SIRT1 axis in central amygdala
Long-term chronic pain can lead to depression. However, the mechanism underlying chronic pain-related depression remains unclear. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase (HDAC). Our previous studies have demonstrated that SIRT1 in the central nucleus of the amygdala (CeA) is involved in the development of chronic pain-related depression. In addition, increasing studies have indicated that long non-coding RNAs (lncRNAs) play a vital role in the pathogenesis of pain or depression. However, whether lncRNAs are involved in SIRT1-mediated chronic pain-related depression remains largely unknown. In this study, we identified that a novel lncRNA-84277 in CeA was the upstream molecule to regulate SIRT1 expression. Functionally, lncRNA-84277 overexpression in CeA significantly alleviated the depression-like behaviors in spared nerve injury (SNI)-induced chronic pain rats, whereas lncRNA-84277 knockdown in CeA induced the depression-like behaviors in naïve rats. Mechanically, lncRNA-84277 acted as a competing endogenous RNA (ceRNA) to upregulate SIRT1 expression by competitively sponging miR-128-3p, and therefore improved chronic pain-related depression-like behaviors. Our findings reveal the critical role of lncRNA-84277 in CeA specifically in guarding against chronic pain-related depression via a ceRNA mechanism and provide a potential therapeutic target for chronic pain-related depression
Risk factors for extraurothelial recurrence in upper tract urothelial carcinoma after radical nephroureterectomy: a retrospective study based on a Chinese population
ObjectivesThe risk factors for extraurothelial recurrence (EUR) after radical nephroureterectomy (RNU) in patients with upper urinary tract urothelial carcinoma (UTUC) are currently inconsistent and unclear. In this study, we aimed to identify these risk factors and develop a grading system for EUR.MethodsWe retrospectively analyzed 220 patients who underwent RNU for UTUC in our center from January 2009 to December 2020. Overall survival (OS) and extraurothelial recurrence-free survival (EURFS) were compared using the Kaplan–Meier curve with a log-rank test. Univariate and multivariate Cox regression models were applied to identify the independent risk factors related to EUR.ResultsThe median follow-up period was 42 (range: 2–143) months. Of the 220 patients, 61 patients developed EUR in our cohort, which had worse survival outcome. Multivariate Cox regression analysis showed pathologic stage, lymph node (LN) status, lymphovascular invasion (LVI), Ki-67, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) were independent risk factors for EUR. The Kaplan–Meier curves revealed a significant difference in EUR among the three risk groups.ConclusionOur study suggests that pathologic stage, LN status, LVI, Ki-67, NLR, and PLR are independent risk factors for EUR in UTUC patients after RNU. The development of a grading system for EUR risk stratification may assist urologists in making clinical decisions regarding the management of UTUC
RESEARCH ON GEAR BOX FAULT DIAGNOSIS BASED ON DCNN AND XGBOOST ALGORITHM
In order to solve the problem of complex fault diagnosis of gearbox,the DCNN( Deep Convolution Neural Network) was combined with the XGBoost( e Xtreme Gradient Boosting) algorithm to establish the fault diagnosis model. Firstly,the DCNN Model was used to adaptively extract the feature matrix of the original vibration acceleration signal. Secondly,the feature matrix was used as input data,and the parameters of XGBoost algorithm were adjusted by lattice parameter method,then the XGBoost model was obtained. Most after that,the XGBoost model was trained by the feature matrix,so the gear box fault diagnosis model of DCNN-XGBoost was obtained. In order to verify the validity of the model and the superiority of XGBoost algorithm,the model was compared with three models: DNN-BP( Back Propagation neural network) model,DCNN-RF( Random Forest) model and DCNN-SVM( Support Vector Machine) model. The DCNN feature matrix and the artificial feature matrix were analyzed by t-SNE visualization algorithm,the results show that the visualization effect of DCNN feature matrix obtained is better than that of artificial feature matrix; Compared with XGBoost,the stability of Random Forest is not as good as that of XGBoost algorithm; Compared with BP neural network, XGBoost algorithm has some advantages in preventing over-fitting; The combination of SVM and DCNN has some limitations. Finally,the diagnostic accuracy and time of DCNN-XGBoost model is better than that of other models
The function of Foxp1 represses β-adrenergic receptor transcription in the occurrence and development of bladder cancer through STAT3 activity
Bladder cancer is a common malignant tumor. FOXP1 has been found to be abnormally expressed in tumors such as renal cell carcinoma and endometrial cancer. Here, this investigated the biological roles of Foxp1 in the occurrence and development of bladder cancer. Patients with bladder cancer were obtained from China-Japan Friendship Hospital. Bladder cancer cell lines (5637, UMUC3, J82, and T24 cell) were used in this experiment. Foxp1 mRNA and protein expression levels in patients with bladder cancer were increased, compared with paracancerous tissue (normal). OS and DFS of Foxp1 low expression in patients with bladder cancer were higher than those of Foxp1 high expression. Foxp1 promoted bladder cancer cell growth in vitro model. Foxp1 increased the Warburg effect of bladder cancer. Foxp1 suppressed β-adrenoceptor (β-AR) expression in vitro model. ChIP-seq showed that Foxp1 binding site (E1, TTATTTAT) was detected at −2,251 bp upstream of the β-AR promoter. β-AR Reduced the effects of Foxp1 on cell growth in vitro model. β-AR reduced the effects of Foxp1 on the Warburg effect in vitro model by STAT3 activity. Taken together, our findings reveal that Foxp1 promoted the occurrence and development of bladder cancer through the Warburg effect by the activation of STAT3 activity and repressing β-AR transcription, and which might serve as an important clue for its targeting and treatment of bladder cancer
Design of Efficient Floating-Point Convolution Module for Embedded System
The convolutional neural network (CNN) has made great success in many fields, and is gradually being applied in edge-computing systems. Taking the limited budget of the resources in the systems into consideration, the implementation of CNNs on embedded devices is preferred. However, accompanying the increasingly complex CNNs is the huge cost of memory, which constrains its implementation on embedded devices. In this paper, we propose an efficient, pipelined convolution module based on a Brain Floating-Point (BF16) to solve this problem, which is composed of a quantization unit, a serial-to-matrix conversion unit, and a convolution operation unit. The mean error of the convolution module based on BF16 is only 0.1538%, which hardly affects the CNN inference. Additionally, when synthesized at 400 MHz, the area of the BF16 convolution module is 21.23% and 18.54% smaller than that of the INT16 and FP16 convolution modules, respectively. Furthermore, our module using the TSMC 90 nm library can run at 1 GHz by optimizing the critical path. Finally, our module was implemented on the Xilinx PYNQ-Z2 board to evaluate the performance. The experimental results show that at the frequency of 100 MHz, our module is, separately, 783.94 times and 579.35 times faster than the Cortex-M4 with FPU and Hummingbird E203, while maintaining an extremely low error rate
The Efficacy and Safety of Ureteric Stent Removal with Strings versus No Strings: Which Is Better?
Objective. To evaluate the current evidence on the effectiveness and safety of ureteric stent removal using strings compared to conventional methods. Materials and Methods. The electronic databases PubMed, Embase, China National Knowledge Infrastructure (CNKI), and the Cochrane Library were systematically searched up to March 2020. Two reviewers searched the literature, independently extracted the data, and evaluated the quality of the studies according to the inclusion and exclusion criteria. The data analysis was performed with the software program Review Manager 5.3. Results. Eleven studies with a total of 1809 patients were included in the analysis based on the inclusion criteria. Our meta-analysis showed that visual analogue scale (VAS) scores were significantly lower in the string group than in the conventional group (weighted mean difference (WMD) -2.63; 95% confidence interval (CI) -3.68, -1.58; P0.05) were observed between the two groups. Conclusion. Our findings suggest that an extraction string is an effective and safe method for the removal of ureteric stents. This method gives patients the benefits of reduced pain and shortened stent dwell time without increasing the risk of UTI. Nevertheless, these findings should be further confirmed through large-volume, well-designed prospective randomized controlled trials (RCTs)
Study of cavity effect in micro-Pirani gauge chamber with improved sensitivity for high vacuum regime
Ultra-low pressure application of Pirani gauge needs significant improvement of sensitivity and expansion of measureable low pressure limit. However, the performance of Pirani gauge in high vacuum regime remains critical concerns since gaseous thermal conduction with high percentage is essential requirement. In this work, the heat transfer mechanism of micro-Pirani gauge packaged in a non-hermetic chamber was investigated and analyzed compared with the one before wafer-level packaging. The cavity effect, extremely important for the efficient detection of low pressure, was numerically and experimentally analyzed considering the influence of the pressure, the temperature and the effective heat transfer area in micro-Pirani gauge chamber. The thermal conduction model is validated by experiment data of MEMS Pirani gauges with and without capping. It is found that nature gaseous convection in chamber, determined by the Rayleigh number, should be taken into consideration. The experiment and model calculated results show that thermal resistance increases in the molecule regime, and further increases after capping due to the suppression of gaseous convection. The gaseous thermal conduction accounts for an increasing percentage of thermal conduction at low pressure while little changes at high pressure after capping because of the existence of cavity effect improving the sensitivity of cavity-effect-influenced Pirani gauge for high vacuum regime
A Three-Port Power Electronic Transformer Based on Magnetic Integration
This paper proposes a three-port power electronic transformer (PET) based on magnetic integration, where the modular multilevel converter (MMC) arm inductors and high-frequency transformer are integrated; thus, the low-voltage DC (LVDC) port can be directly obtained. Such a magnetic integration structure has advantages of reduction in magnetic volume and number of active switches, implying a compact structure and reduced cost. Compared with existing PETs, the proposed PET can save more than 60% of magnetic volume and more than 19% of device cost. The proposed PET is suitable for AC/DC hybrid distribution applications with medium-voltage DC (MVDC), medium-voltage AC (MVAC), and LVDC ports, especially for scenarios where moderate amounts of power (100 s of kW) are tapped from an LVDC port. The feasibility of the proposed three-port PET has been verified by simulation and experimental results
Liposomal Neostigmine Bromide: A Localized Therapeutic Approach for Detrusor Underactivity
This study aims to evaluate the therapeutic potential of cationic liposomal neostigmine bromide (NB), a novel drug delivery system, for the treatment of detrusor underactivity. By comparing the characteristics of NB‐liposomes (NLP), NB‐β‐cyclodextrin inclusion complex liposomes (NCLP), and NB‐mesoporous silica nanoparticle@CaCO3 liposomes (NMCLP), NMCLP is selected as the main research subject. It has an average particle size and zeta potential of 100 nm and +50 mV, and its encapsulation efficiency and loading capacity of NB are 14.75% and 12.8%, respectively. Most importantly, NMCLP shows the best in vitro release performance among the three liposomes, demonstrating its ability in sustained release of NB. During cell and animal assays, efficient cellular uptake of liposomes through liposome‐specific pathways is observed, facilitating targeted drug delivery, and in vivo experiments demonstrate the efficacy of NMCLP in improving bladder function in mice. Urodynamic measurements show increased bladder capacity and reduced voiding pressure, indicating enhanced bladder muscle activity. Histological analysis reveals the distribution and deep penetration of NMCLP within bladder tissues, supporting its localized drug effect. Therefore, NMCLP holds promise as a targeted and effective therapeutic strategy for detrusor underactivity