13 research outputs found

    Modeling of senescence-related chemoresistance in ovarian cancer using data analysis and patient-derived organoids

    Get PDF
    BackgroundOvarian cancer (OC) is a malignant tumor associated with poor prognosis owing to its susceptibility to chemoresistance. Cellular senescence, an irreversible biological state, is intricately linked to chemoresistance in cancer treatment. We developed a senescence-related gene signature for prognostic prediction and evaluated personalized treatment in patients with OC.MethodsWe acquired the clinical and RNA-seq data of OC patients from The Cancer Genome Atlas and identified a senescence-related prognostic gene set through differential and cox regression analysis in distinct chemotherapy response groups. A prognostic senescence-related signature was developed and validated by OC patient-derived-organoids (PDOs). We leveraged gene set enrichment analysis (GSEA) and ESTIMATE to unravel the potential functions and immune landscape of the model. Moreover, we explored the correlation between risk scores and potential chemotherapeutic agents. After confirming the congruence between organoids and tumor tissues through immunohistochemistry, we measured the IC50 of cisplatin in PDOs using the ATP activity assay, categorized by resistance and sensitivity to the drug. We also investigated the expression patterns of model genes across different groups.ResultsWe got 2740 differentially expressed genes between two chemotherapy response groups including 43 senescence-related genes. Model prognostic genes were yielded through univariate cox analysis, and multifactorial cox analysis. Our work culminated in a senescence-related prognostic model based on the expression of SGK1 and VEGFA. Simultaneously, we successfully constructed and propagated three OC PDOs for drug screening. PCR and WB from PDOs affirmed consistent expression trends as those of our model genes derived from comprehensive data analysis. Specifically, SGK1 exhibited heightened expression in cisplatin-resistant OC organoids, while VEGFA manifested elevated expression in the sensitive group (P<0.05). Intriguingly, GSEA results unveiled the enrichment of model genes in the PPAR signaling pathway, pivotal regulator in chemoresistance and tumorigenesis. This revelation prompted the identification of potential beneficial drugs for patients with a high-risk score, including gemcitabine, dabrafenib, epirubicin, oxaliplatin, olaparib, teniposide, ribociclib, topotecan, venetoclax.ConclusionThrough the formulation of a senescence-related signature comprising SGK1 and VEGFA, we established a promising tool for prognosticating chemotherapy reactions, predicting outcomes, and steering therapeutic strategies. Patients with high VEGFA and low SGK1 expression levels exhibit heightened sensitivity to chemotherapy

    LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic β cells

    Get PDF
    Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning β cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and β cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human β cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in β cells to maintain appropriate insulin release

    LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic β cells

    Get PDF
    Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning β cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and β cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human β cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in β cells to maintain appropriate insulin release.</p

    Development and Application of Intelligent Assessment System for Metacognition in Learning Mathematics among Junior High School Students

    No full text
    Metacognition is one of the key factors that determine students’ mathematics learning and affects students’ sustainable development. Metacognition assessment has attracted more and more attention from researchers, but how to effectively assess and improve students’ metacognition is still unknown. Based on the theoretical basis and practical verification, a mathematics metacognitive intelligence assessment and strategy implementation system for middle school students was developed from both qualitative and quantitative perspectives. This system features the mix of an assessment structural model, assessment scales, a set of norms, improvement strategies and the intelligent assessment and strategy implementation program, which can intelligently output students’ mathematical metacognition level and propose targeted improvement strategies. Through the application of the system to 2100 students in Tianjin, China, the results show that the subjects have advantages in mathematical metacognitive knowledge and mathematical metacognitive management. The mathematical metacognitive experience needs to be improved. After intervening with the subjects, according to the improvement strategy provided by the system, it was found that their mathematical metacognition was improved, indicating that the system has a good effect

    Development and Application of Intelligent Assessment System for Metacognition in Learning Mathematics among Junior High School Students

    No full text
    Metacognition is one of the key factors that determine students&rsquo; mathematics learning and affects students&rsquo; sustainable development. Metacognition assessment has attracted more and more attention from researchers, but how to effectively assess and improve students&rsquo; metacognition is still unknown. Based on the theoretical basis and practical verification, a mathematics metacognitive intelligence assessment and strategy implementation system for middle school students was developed from both qualitative and quantitative perspectives. This system features the mix of an assessment structural model, assessment scales, a set of norms, improvement strategies and the intelligent assessment and strategy implementation program, which can intelligently output students&rsquo; mathematical metacognition level and propose targeted improvement strategies. Through the application of the system to 2100 students in Tianjin, China, the results show that the subjects have advantages in mathematical metacognitive knowledge and mathematical metacognitive management. The mathematical metacognitive experience needs to be improved. After intervening with the subjects, according to the improvement strategy provided by the system, it was found that their mathematical metacognition was improved, indicating that the system has a good effect

    Efficient Generation of Orthologous Point Mutations in Pigs via CRISPR-assisted ssODN-mediated Homology-directed Repair

    No full text
    Precise genome editing in livestock is of great value for the fundamental investigation of disease modeling. However, genetically modified pigs carrying subtle point mutations were still seldom reported despite the rapid development of programmable endonucleases. Here, we attempt to investigate single-stranded oligonucleotides (ssODN) mediated knockin by introducing two orthologous pathogenic mutations, p.E693G for Alzheimer's disease and p.G2019S for Parkinson's disease, into porcine APP and LRRK2 loci, respectively. Desirable homology-directed repair (HDR) efficiency was achieved in porcine fetal fibroblasts (PFFs) by optimizing the dosage and length of ssODN templates. Interestingly, incomplete HDR alleles harboring partial point mutations were observed in single-cell colonies, which indicate the complex mechanism of ssODN-mediated HDR. The effect of mutation-to-cut distance on incorporation rate was further analyzed by deep sequencing. We demonstrated that a mutation-to-cut distance of 11 bp resulted in a remarkable difference in HDR efficiency between two point mutations. Finally, we successfully obtained one cloned piglet harboring the orthologous p.C313Y mutation at the MSTN locus via somatic cell nuclear transfer (SCNT). Our proof-of-concept study demonstrated efficient ssODN-mediated incorporation of pathogenic point mutations in porcine somatic cells, thus facilitating further development of disease modeling and genetic breeding in pigs

    CRISPR/Cas9-Mediated Hitchhike Expression of Functional shRNAs at the Porcine miR-17-92 Cluster

    No full text
    Successful RNAi applications depend on strategies allowing stable and persistent expression of minimal gene silencing triggers without perturbing endogenous gene expression. In this study, we proposed an endogenous microRNA (miRNA) cluster as a novel integration site for small hairpin RNAs (shRNAs). We successfully integrated exogenous shRNAs at the porcine miRNA-17-92 (pmiR-17-92) cluster via a CRISPR/Cas9-mediated knock-in strategy. The anti-EGFP or anti-CSFV shRNAs could be stably and effectively expressed at the control of the endogenous promoter of the pmiR-17-92 cluster. Importantly, we confirmed that hitchhike expression of anti- classical swine fever (CSFV) shRNA had no effect on cell growth, blastocyst development and endogenous pmiR-17-92 expression in selected transgene (TG) porcine fetal fibroblasts (PFFs) clones. Moreover, these TG PFFs could inhibit the replication of CSFV by half and could be further used for generation of transgenic pigs. Taken together, these results show that our RNA interference (RNAi) expression strategy benefits numerous applications, from miRNA, genome and transgenic research, to gene therapy

    Site-Specific Fat-1 Knock-In Enables Significant Decrease of n-6PUFAs/n-3PUFAs Ratio in Pigs

    No full text
    The fat-1 gene from Caenorhabditis elegans encodes a fatty acid desaturase which was widely studied due to its beneficial function of converting n-6 polyunsaturated fatty acids (n-6PUFAs) to n-3 polyunsaturated fatty acids (n-3PUFAs). To date, many fat-1 transgenic animals have been generated to study disease pathogenesis or improve meat quality. However, all of them were generated using a random integration method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker-free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n-6PUFAs/n-3PUFAs ratio from 9.36 to 2.12 (***P < 0.0001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n-3PUFAs on various diseases

    Identification and Functional Analysis of the Regulatory Elements in the p<i>HSPA6</i> Promoter

    No full text
    Functional and expressional research of heat shock protein A6 (HSPA6) suggests that the gene is of great value for neurodegenerative diseases, biosensors, cancer, etc. Based on the important value of pigs in agriculture and biomedicine and to advance knowledge of this little-studied HSPA member, the stress-sensitive sites in porcine HSPA6 (pHSPA6) were investigated following different stresses. Here, two heat shock elements (HSEs) and a conserved region (CR) were identified in the pHSPA6 promoter by a CRISPR/Cas9-mediated precise gene editing strategy. Gene expression data showed that sequence disruption of these regions could significantly reduce the expression of pHSPA6 under heat stress. Stimulation studies indicated that these regions responded not only to heat stress but also to copper sulfate, MG132, and curcumin. Further mechanism studies showed that downregulated pHSPA6 could significantly affect some important members of the HSP family that are involved in HSP40, HSP70, and HSP90. Overall, our results provide a new approach for investigating gene expression and regulation that may contribute to gene regulatory mechanisms, drug target selection, and breeding stock selection
    corecore