732 research outputs found
Architecture of a Cyberphysical Avatar
REACTION 2012. 1st International workshop on Real-time and distributed computing in emerging applications. December 4th, 2012, San Juan, Puerto Rico.This paper introduces the concept of a cyberphysical
avatar which is defined to be a semi-autonomous robotic system
that adjusts to an unstructured environment and performs
physical tasks subject to critical timing constraints while under
human supervision. Cyberphysical avatar integrates the recent
advance in three technologies: body-compliant control in robotics,
neuroevolution in machine learning and QoS guarantees in realtime
communication. Body-compliant control is essential for
operator safety since cyberphysical avatars perform cooperative
tasks in close proximity to humans. Neuroevolution technique is
essential for ”programming” cyberphysical avatars inasmuch as
they are to be used by non-experts for a large array of tasks, some
unforeseen, in an unstructured environment. QoS-guaranteed realtime
communication is essential to provide predictable, boundedtime
response in human-avatar interaction. By integrating these
technologies, we have built a prototype cyberphysical avatar
testbed
Drosophila tan Encodes a Novel Hydrolase Required in Pigmentation and Vision
Many proteins are used repeatedly in development, but usually the function of the protein is similar in the different contexts. Here we report that the classical Drosophila melanogaster locus tan encodes a novel enzyme required for two very different cellular functions: hydrolysis of N-β-alanyl dopamine (NBAD) to dopamine during cuticular melanization, and hydrolysis of carcinine to histamine in the metabolism of photoreceptor neurotransmitter. We characterized two tan-like P-element insertions that failed to complement classical tan mutations. Both are inserted in the 5′ untranslated region of the previously uncharacterized gene CG12120, a putative homolog of fungal isopenicillin-N N-acyltransferase (EC 2.3.1.164). Both P insertions showed abnormally low transcription of the CG12120 mRNA. Ectopic CG12120 expression rescued tan mutant pigmentation phenotypes and caused the production of striking black melanin patterns. Electroretinogram and head histamine assays indicated that CG12120 is required for hydrolysis of carcinine to histamine, which is required for histaminergic neurotransmission. Recombinant CG12120 protein efficiently hydrolyzed both NBAD to dopamine and carcinine to histamine. We conclude that D. melanogaster CG12120 corresponds to tan. This is, to our knowledge, the first molecular genetic characterization of NBAD hydrolase and carcinine hydrolase activity in any organism and is central to the understanding of pigmentation and photoreceptor function
High CRLF2 expression associates with IKZF1 dysfunction in adult acute lymphoblastic leukemia without CRLF2 rearrangement.
Overexpression of cytokine receptor-like factor 2 (CRLF2) due to chromosomal rearrangement has been observed in acute lymphoblastic leukemia (ALL) and reported to contribute to oncogenesis and unfavorable outcome in ALL. We studied B-ALL and T-ALL patients without CRLF2 rearrangement and observed that CRLF2 is significantly increased in a subset of these patients. Our study shows that high CRLF2expression correlates with high-risk ALL markers, as well as poor survival. We found that the IKZF1-encoded protein, Ikaros, directly binds to the CRLF2 promoter and regulates CRLF2 expression in leukemia cells. CK2 inhibitor, which can increase Ikaros activity, significantly increases Ikaros binding in ALL cells and suppresses CRLF2 expression in an Ikaros-dependent manner. CRLF2 expression is significantly higher in patients with IKZF1 deletion as compared to patients without IKZF1 deletion. Treatment with CK2 inhibitor also results in an increase in IKZF1 binding to the CRLF2 promoter and suppression of CRLF2 expression in primary ALL cells. We further observed that CK2 inhibitor induces increased H3K9me3 histone modifications in the CRLF2 promoter in ALL cell lines and primary cells. Taken together, our results demonstrate that high expression of CRLF2 correlates with high-risk ALL and short survival in patients without CRLF2 rearrangement. Our results are the first to demonstrate that the IKZF1-encoded Ikaros protein directly suppresses CRLF2 expression through enrichment of H3K9me3 in its promoter region. Our data also suggest that high CRLF2 expression works with the IKZF1 deletion to drive oncogenesis of ALL and has significance in an integrated prognostic model for adult high-risk ALL
Thermal stability, pH dependence and inhibition of four murine kynurenine aminotransferases
<p>Abstract</p> <p>Background</p> <p>Kynurenine aminotransferase (KAT) catalyzes the transamination of kynunrenine to kynurenic acid (KYNA). KYNA is a neuroactive compound and functions as an antagonist of alpha7-nicotinic acetylcholine receptors and is the only known endogenous antagonist of N-methyl-D-aspartate receptors. Four KAT enzymes, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase, have been reported in mammalian brains. Because of the substrate overlap of the four KAT enzymes, it is difficult to assay the specific activity of each KAT in animal brains.</p> <p>Results</p> <p>This study concerns the functional expression and comparative characterization of KAT I, II, III, and IV from mice. At the applied test conditions, equimolar tryptophan with kynurenine significantly inhibited only mouse KAT I and IV, equimolar methionine inhibited only mouse KAT III and equimolar aspartate inhibited only mouse KAT IV. The activity of mouse KAT II was not significantly inhibited by any proteinogenic amino acids at equimolar concentrations. pH optima, temperature preferences of four KATs were also tested in this study. Midpoint temperatures of the protein melting, half life values at 65°C, and pKa values of mouse KAT I, II, III, and IV were 69.8, 65.9, 64.8 and 66.5°C; 69.7, 27.4, 3.9 and 6.5 min; pH 7.6, 5.7, 8.7 and 6.9, respectively.</p> <p>Conclusion</p> <p>The characteristics reported here could be used to develop specific assay methods for each of the four murine KATs. These specific assays could be used to identify which KAT is affected in mouse models for research and to develop small molecule drugs for prevention and treatment of KAT-involved human diseases.</p
Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase
3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses.In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine.The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins
Microarray analysis distinguishes differential gene expression patterns from large and small colony Thymidine kinase mutants of L5178Y mouse lymphoma cells
BACKGROUND: The Thymidine kinase (Tk) mutants generated from the widely used L5178Y mouse lymphoma assay fall into two categories, small colony and large colony. Cells from the large colonies grow at a normal rate while cells from the small colonies grow slower than normal. The relative proportion of large and small colonies after mutagen treatment is associated with a mutagen's ability to induce point mutations and/or chromosomal mutations. The molecular distinction between large and small colony mutants, however, is not clear. RESULTS: To gain insights into the underlying mechanisms responsible for the mutant colony phenotype, microarray gene expression analysis was carried out on 4 small and 4 large colony Tk mutant samples. NCTR-fabricated long-oligonucleotide microarrays of 20,000 mouse genes were used in a two-color reference design experiment. The data were analyzed within ArrayTrack software that was developed at the NCTR. Principal component analysis and hierarchical clustering of the gene expression profiles showed that the samples were clearly separated into two groups based on their colony size phenotypes. The Welch T-test was used for determining significant changes in gene expression between the large and small colony groups and 90 genes whose expression was significantly altered were identified (p < 0.01; fold change > 1.5). Using Ingenuity Pathways Analysis (IPA), 50 out of the 90 significant genes were found in the IPA database and mapped to four networks associated with cell growth. Eleven percent of the 90 significant genes were located on chromosome 11 where the Tk gene resides while only 5.6% of the genes on the microarrays mapped to chromosome 11. All of the chromosome 11 significant genes were expressed at a higher level in the small colony mutants compared to the large colony mutants. Also, most of the significant genes located on chromosome 11 were disproportionally concentrated on the distal end of chromosome 11 where the Tk mutations occurred. CONCLUSION: The results indicate that microarray analysis can define cellular phenotypes and identify genes that are related to the colony size phenotypes. The findings suggest that genes in the DNA segment altered by the Tk mutations were significantly up-regulated in the small colony mutants, but not in the large colony mutants, leading to differential expression of a set of growth regulation genes that are related to cell apoptosis and other cellular functions related to the restriction of cell growth
- …
