114 research outputs found

    FlexKBQA: A Flexible LLM-Powered Framework for Few-Shot Knowledge Base Question Answering

    Full text link
    Knowledge base question answering (KBQA) is a critical yet challenging task due to the vast number of entities within knowledge bases and the diversity of natural language questions posed by users. Unfortunately, the performance of most KBQA models tends to decline significantly in real-world scenarios where high-quality annotated data is insufficient. To mitigate the burden associated with manual annotation, we introduce FlexKBQA by utilizing Large Language Models (LLMs) as program translators for addressing the challenges inherent in the few-shot KBQA task. Specifically, FlexKBQA leverages automated algorithms to sample diverse programs, such as SPARQL queries, from the knowledge base, which are subsequently converted into natural language questions via LLMs. This synthetic dataset facilitates training a specialized lightweight model for the KB. Additionally, to reduce the barriers of distribution shift between synthetic data and real user questions, FlexKBQA introduces an executionguided self-training method to iterative leverage unlabeled user questions. Furthermore, we explore harnessing the inherent reasoning capability of LLMs to enhance the entire framework. Consequently, FlexKBQA delivers substantial flexibility, encompassing data annotation, deployment, and being domain agnostic. Through extensive experiments on GrailQA, WebQSP, and KQA Pro, we observe that under the few-shot even the more challenging zero-shot scenarios, FlexKBQA achieves impressive results with a few annotations, surpassing all previous baselines and even approaching the performance of supervised models, achieving a remarkable 93% performance relative to the fully-supervised models. We posit that FlexKBQA represents a significant advancement towards exploring better integration of large and lightweight models. The code is open-sourced.Comment: Accepted as AAAI-24 Oral paper; Knowledge Base Question Answering; Large Language Model; Data Generation; Few-Shot & Zero-Sho

    High CRLF2 expression associates with IKZF1 dysfunction in adult acute lymphoblastic leukemia without CRLF2 rearrangement.

    Get PDF
    Overexpression of cytokine receptor-like factor 2 (CRLF2) due to chromosomal rearrangement has been observed in acute lymphoblastic leukemia (ALL) and reported to contribute to oncogenesis and unfavorable outcome in ALL. We studied B-ALL and T-ALL patients without CRLF2 rearrangement and observed that CRLF2 is significantly increased in a subset of these patients. Our study shows that high CRLF2expression correlates with high-risk ALL markers, as well as poor survival. We found that the IKZF1-encoded protein, Ikaros, directly binds to the CRLF2 promoter and regulates CRLF2 expression in leukemia cells. CK2 inhibitor, which can increase Ikaros activity, significantly increases Ikaros binding in ALL cells and suppresses CRLF2 expression in an Ikaros-dependent manner. CRLF2 expression is significantly higher in patients with IKZF1 deletion as compared to patients without IKZF1 deletion. Treatment with CK2 inhibitor also results in an increase in IKZF1 binding to the CRLF2 promoter and suppression of CRLF2 expression in primary ALL cells. We further observed that CK2 inhibitor induces increased H3K9me3 histone modifications in the CRLF2 promoter in ALL cell lines and primary cells. Taken together, our results demonstrate that high expression of CRLF2 correlates with high-risk ALL and short survival in patients without CRLF2 rearrangement. Our results are the first to demonstrate that the IKZF1-encoded Ikaros protein directly suppresses CRLF2 expression through enrichment of H3K9me3 in its promoter region. Our data also suggest that high CRLF2 expression works with the IKZF1 deletion to drive oncogenesis of ALL and has significance in an integrated prognostic model for adult high-risk ALL

    Human Mena Associates with Rac1 Small GTPase in Glioblastoma Cell Lines

    Get PDF
    Mammarian enabled (Mena), a member of the Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) family of proteins, has been implicated in cell motility through regulation of the actin cytoskeleton assembly, including lamellipodial protrusion. Rac1, a member of the Rho family GTPases, also plays a pivotal role in the formation of lamellipodia. Here we report that human Mena (hMena) colocalizes with Rac1 in lamellipodia, and using an unmixing assisted acceptor depletion fluorescence resonance energy transfer (u-adFRET) analysis that hMena associates with Rac1 in vivo in the glioblastoma cell line U251MG. Depletion of hMena by siRNA causes cells to be highly spread with the formation of lamellipodia. This cellular phenotype is canceled by introduction of a dominant negative form of Rac1. A Rac activity assay and FRET analysis showed that hMena knock-down cells increased the activation of Rac1 at the lamellipodia. These results suggest that hMena possesses properties which help to regulate the formation of lamellipodia through the modulation of the activity of Rac1

    Fabrication and braiding angle effect on the improved interlaminar shear performances of 3D braided sandwich hybrid composites

    No full text
    While the interlaminar hybrid composites have been used widely and still remain in great demands, interlayer delamination, undesirable in most cases, keeps a common defect, due to the lack of interlaminar fiber-connection. Here, on the basis of the yarn interlacing rule in three-dimensional (3D) four-step braiding technology, 3D braided carbon fibers/Kevlar fibers sandwich (S_) hybrid composites with different braiding angles (S_20°, S_30° and S_40°) have been designed and fabricated with interlaminar fiber-connection. Short-beam shear tests were applied to evaluate the interlaminar shear performances of specimens. The in-situ strain maps during tests were characterized by digital image correlation (DIC) technique and specimen damages were observed via scanning electron microscope (SEM) and computed tomography (CT). Results showed that, comparing to the conventional co-cured laminated hybrid composites, 3D braided sandwich hybrid composites resisted the delamination effectively by the fiber-connection hybrid region. Braiding angle effect of 3D braided sandwich hybrid composites revealed that S_20° showed better deformability and higher structural toughness than their counterparts in S_30° and S_40°. The results presented in the current work would be helpful for the design and manufacturing of well structured hybrid preforms and composites with dramatically improved interlaminar shear properties

    Analysis of Survivin Expression in the Subtypes of Lymphoma

    No full text

    Responses of Mesosphere and Lower Thermosphere Temperature to the Geomagnetic Storm on 7–8 September 2017

    No full text
    The variations of neutral temperature in the mesosphere and lower thermosphere (MLT) region, during the 7–8 September 2017 intense geomagnetic storm, are studied using observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. They are also studied using simulations by the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM). The neutral temperature data cover the altitudes from 80 km to 110 km between 83° N and 52° S latitude, obtained from both SABER observations and model simulations. The SABER observations reveal that temperature increases (the maximum increase is larger than 35 K at ~108 km) and decreases (the maximum decrease is larger than 20 K at ~105 km) during the geomagnetic storm. The storm effects penetrate down to ~80 km. In observations, temperature variations corresponding to the storm show hemispheric asymmetry. That is, the variations of temperature are more prominent in the northern hemisphere than in the southern hemisphere. Conversely, the TIMEGCM outputs agree with the observations in general but overestimate the temperature increases and underestimate the temperature decreases at high and middle latitudes. Meanwhile, the simulations show stronger temperature decreases and weaker temperature increases than observations at low latitudes. After analyzing the temperature variations, we suggest that vertical winds may play an important role in inducing these significant variations of temperature in the MLT region

    High and long-term antibacterial activity against Escherichia coli via synergy between the antibiotic penicillin G and its carrier ZnAl layered double hydroxide

    No full text
    Antibiotic-resistant bacterial infections are a global health problem. A commonly-used antibiotic Penicillin G was incorporated into ZnAl-layered double hydroxides (PNG/LDH) with a varied amount of PNG. PNG/LDH nanocomposites were well characterized in structure and composition using elemental analysis, X-ray diffraction pattern, Fourier transform infrared spectroscopy and TEM images, revealing that PNG were mostly adsorbed on the LDH surfaces at a lower PNG loading but some were intercalated into LDH interlayers at a higher PNG loading. The typical release profile of PNG and Zn from PNG/LDH was a quick release, followed by a sustainable slow release. The antibacterial tests against Escherichia coli demonstrated that PNG/LDH with a suitable composition synergistically improved bacterial inhibition compared with free PNG and pristine LDHs. In specific, PNG/LDH with much higher cost-effectiveness showed a potent antimicrobial activity and maintained the activity for up to 10 days, significantly elongating the antibacterial effect compared with just 1 day for free PNG in the same conditions. Our results suggest suitable composition of nanoparticle carriers and antibiotics could significantly enhance antibacterial activity of antibiotics for a long period via the synergistic effect between carrier and antibiotics, a potential approach to overcome the bacterial resistance to antibiotics

    Genesis mechanism of the Sinian-Cambrian reservoirs in the Anyue Gas Field, Sichuan Basin

    No full text
    The Lower Cambrian Longwangmiao Fm, the 4th and 2nd members of the Sinian Dengying Fm are the three major gas layers in the Anyue Gas Field of the Sichuan Basin. Their main characteristics and genesis mechanism were investigated, and the following three findings were obtained. First, according to sedimentary microfacies, lithology and porosity, the Longwangmiao Fm is identified as fractured-vuggy dolomite reservoir of grain shoal facies, the 4th member of the Dengying Fm as fractured-vuggy (cavernous) dolomite reservoir of cyanobacteria mound beach facies, and the 2nd member of the Dengying Fm as fractured-vuggy dolomite reservoirs of cyanobacteria mound beach facies. Second, the Longwangmiao Fm is mainly grain dolomite, with dissolution pores and vugs as major reservoir space, at an average porosity of 4.24% and an average thickness of 36 m. The 4th member of the Dengying Fm made up of cyanobacteria dolomite has dissolution pores, vugs and caverns as major reservoir space with an average porosity of 3.22% and an average thickness of 70 m. The 2nd member of the Dengying Fm composed of cyanobacteria dolomite has fractures and vugs as major reservoir space with an average porosity of 3.34% and an average thickness of 80 m. Third, those reservoirs experienced multiple evolutionary stages including porosity development, hydrothermal mineral filling, asphalt filling etc. Penecontemporaneous dissolution and supergene karstification are the key factors controlling the formation of the reservoir space and the evolution models of the reservoirs were figured out
    • …
    corecore