101 research outputs found

    Elucidating the Roles of Nafion/Solvent Formulations in Copper-Catalyzed CO2 Electrolysis

    Get PDF
    Nafion ionomer, composed of hydrophobic perfluorocarbon backbones and hydrophilic sulfonic acid side chains, is the most widely used additive for preparing catalyst layers (CLs) for electrochemical CO2 reduction, but its impact on the performance of CO2 electrolysis remains poorly understood. Here, we systematically investigate the role of the catalyst ink formulation on CO2 electrolysis using commercial CuO nanoparticles as the model pre-catalyst. We find that the presence of Nafion is essential for achieving stable product distributions due to its ability to stabilize the catalyst morphology under reaction conditions. Moreover, the Nafion content and solvent composition (water/alcohol fraction) regulate the internal structure of Nafion coatings, as well as the catalyst morphology, thereby significantly impacting CO2 electrolysis performance, resulting in variations of C2+ product Faradaic efficiency (FE) by >3Ă—, with C2+ FE ranging from 17 to 54% on carbon paper substrates. Using a combination of ellipsometry and in situ Raman spectroscopy during CO2 reduction, we find that such selectivity differences stem from changes to the local reaction microenvironment. In particular, the combination of high water/alcohol ratios and low Nafion fractions in the catalyst ink results in stable and favorable microenvironments, increasing the local CO2/H2O concentration ratio and promoting high CO surface coverage to facilitate C2+ production in long-term CO2 electrolysis. Therefore, this work provides insights into the critical role of Nafion binders and underlines the importance of optimizing Nafion/solvent formulations as a means of enhancing the performance of electrochemical CO2 reduction systems

    Research on Intelligent Evaluation System of Load-bearing Capacity of Existing Reinforced Concrete Bridge

    No full text
    The intelligent evaluation system of existing reinforced concrete bridge “BLP” is a special software for the load-bearing capacity rapid analysis and evaluation of the existing reinforced concrete bridge, which was developed by the Highway Research Institute of the Ministry of Transport. Based on the parametric modelling method, it can quickly and easily establish the finite element plane model of the bridge structure for the static analysis of ultimate bearing capacity limit states and serviceability limit state, under variety norms. And it can easily and quickly build variable-section beams and rebars, with the special module. According to the comprehensive modification method of the load-bearing capacity evaluation, it can automatically recommend checking sections, and automatically calculate partial modification coefficient of resistance effect, and conveniently judge the safety coefficient of the sections, and quickly get the results of bridge load-bearing capacity. In summary, this system can significantly improve the work efficiency and accuracy of load-bearing capacity for exiting reinforced concrete bridge. This paper introduces in detail the characteristics of the intelligent analysis technology, calculation principle and real bridge application examples of the system

    Revolutionize livestock breeding in the future: an animal embryo-stem cell breeding system in a dish

    No full text
    Abstract Meat and milk production needs to increase ~ 70–80% relative to its current levels for satisfying the human needs in 2050. However, it is impossible to achieve such genetic gain by conventional animal breeding systems. Based on recent advances with regard to in vitro induction of germ cell from pluripotent stem cells, herein we propose a novel embryo-stem cell breeding system. Distinct from the conventional breeding system in farm animals that involves selecting and mating individuals, the novel breeding system completes breeding cycles from parental to offspring embryos directly by selecting and mating embryos in a dish. In comparison to the conventional dairy breeding scheme, this system can rapidly achieve 30–40 times more genetic gain by significantly shortening generation interval and enhancing selection intensity. However, several major obstacles must be overcome before we can fully use this system in livestock breeding, which include derivation and mantaince of pluripotent stem cells in domestic animals, as well as in vitro induction of primordial germ cells, and subsequent haploid gametes. Thus, we also discuss the potential efforts needed in solving the obstacles for application this novel system, and elaborate on their groundbreaking potential in livestock breeding. This novel system would provide a revolutionary animal breeding system by offering an unprecedented opportunity for meeting the fast-growing meat and milk demand of humans

    Geographical Distribution and Relationship with Environmental Factors of Paphiopedilum Subgenus Brachypetalum Hallier (Orchidaceae) Taxa in Southwest China

    No full text
    The determination of the geographic distributions of orchid species and their relationships with environmental factors are considered fundamental to their conservation. Paphiopedilum subgenus Brachypetalum is one of the most primitive, ornamental, and threatened groups of Orchidaceae. However, little is known about the distribution of Brachypetalum orchids and how they are influenced by environmental factors. In this study, we developed a database on the geographical distribution of Brachypetalum orchids based on a large-scale field investigation in the Guangxi, Guizhou, and Yunnan provinces of southwest China (2019-2020). Using this database, we first adopted the nonparametric Mann-Whitney U test to analyze the differences in the geographical distributions and growth environments of Brachypetalum orchids. In addition, we also used the method of principal component analysis (PCA) to explore distribution patterns of Brachypetalum orchids in relation to environmental factors (topography, climate, anthropogenic disturbance, productivity, and soil) in southwest China. Our results indicated that Brachypetalum orchid species were mainly distributed in the karst limestone habitats of southwest China. In general, there were 194 existing localities with the occurrence of seven target orchids in the investigated area. Of the discovered species in our study, 176 locations (~90.7%) were distributed primarily in the karst habitat. Among them, the range of 780-1267 m was the most concentrated elevation of Brachypetalum orchids. In addition, the findings also suggested that the distribution of Brachypetalum orchids in southwest China was relatively scattered in geographical space. However, the density of the distribution of Brachypetalum orchids was high, between 104 degrees and 108 degrees E and between 25 degrees and 26 degrees N. The results of the Mann-Whitney U test revealed that there are obviously different geographical distributions and growth environments of Brachypetalum in southwest China. More specifically, we found some extremely significant differences (p < 0.001) in elevation, mean diurnal range, precipitation of coldest quarter, solar radiation, and exchangeable Ca2+ between the provinces of southwest China. The PCA analysis revealed that elevation, solar radiation, temperature (mean diurnal range, annual temperature range) and precipitation (precipitation seasonality, precipitation of the warmest quarter) were found to be the most significant factors in determining Brachypetalum orchids' distribution. These findings have implications in assessing conservation effectiveness and determining niche breadth to better protect the populations of these Brachypetalum orchid species in the future
    • …
    corecore