457 research outputs found
Long-term Stabilization of Fiber Laser Using Phase-locking Technique with Ultra-low Phase Noise and Phase Drift
We review the conventional phase-locking technique in the long-term
stabilization of the mode-locked fiber laser and investigate the phase noise
limitation of the conventional technique. To break the limitation, we propose
an improved phase-locking technique with an optic-microwave phase detector in
achieving the ultra-low phase noise and phase drift. The mechanism and the
theoretical model of the novel phase-locking technique are also discussed. The
long-term stabilization experiments demonstrate that the improved technique can
achieve the long-term stabilization for the MLFL with ultra-low phase noise and
phase drift. The excellent locking performance of the improved phase-locking
technique implies that this technique can be used to stabilize the mode-locked
fiber laser with the highly stable H-master or optical clock without stability
loss
Towards A Unified Policy Abstraction Theory and Representation Learning Approach in Markov Decision Processes
Lying on the heart of intelligent decision-making systems, how policy is
represented and optimized is a fundamental problem. The root challenge in this
problem is the large scale and the high complexity of policy space, which
exacerbates the difficulty of policy learning especially in real-world
scenarios. Towards a desirable surrogate policy space, recently policy
representation in a low-dimensional latent space has shown its potential in
improving both the evaluation and optimization of policy. The key question
involved in these studies is by what criterion we should abstract the policy
space for desired compression and generalization. However, both the theory on
policy abstraction and the methodology on policy representation learning are
less studied in the literature. In this work, we make very first efforts to
fill up the vacancy. First, we propose a unified policy abstraction theory,
containing three types of policy abstraction associated to policy features at
different levels. Then, we generalize them to three policy metrics that
quantify the distance (i.e., similarity) of policies, for more convenient use
in learning policy representation. Further, we propose a policy representation
learning approach based on deep metric learning. For the empirical study, we
investigate the efficacy of the proposed policy metrics and representations, in
characterizing policy difference and conveying policy generalization
respectively. Our experiments are conducted in both policy optimization and
evaluation problems, containing trust-region policy optimization (TRPO),
diversity-guided evolution strategy (DGES) and off-policy evaluation (OPE).
Somewhat naturally, the experimental results indicate that there is no a
universally optimal abstraction for all downstream learning problems; while the
influence-irrelevance policy abstraction can be a generally preferred choice.Comment: Preprint versio
Efficient Deep Reinforcement Learning via Adaptive Policy Transfer
Transfer Learning (TL) has shown great potential to accelerate Reinforcement
Learning (RL) by leveraging prior knowledge from past learned policies of
relevant tasks. Existing transfer approaches either explicitly computes the
similarity between tasks or select appropriate source policies to provide
guided explorations for the target task. However, how to directly optimize the
target policy by alternatively utilizing knowledge from appropriate source
policies without explicitly measuring the similarity is currently missing. In
this paper, we propose a novel Policy Transfer Framework (PTF) to accelerate RL
by taking advantage of this idea. Our framework learns when and which source
policy is the best to reuse for the target policy and when to terminate it by
modeling multi-policy transfer as the option learning problem. PTF can be
easily combined with existing deep RL approaches. Experimental results show it
significantly accelerates the learning process and surpasses state-of-the-art
policy transfer methods in terms of learning efficiency and final performance
in both discrete and continuous action spaces.Comment: Accepted by IJCAI'202
- …