61 research outputs found

    Prostaglandin E1 Alleviates Cognitive Dysfunction in Chronic Cerebral Hypoperfusion Rats by Improving Hemodynamics

    Get PDF
    Compensatory vascular mechanisms can restore cerebral blood flow (CBF) but fail to protect against chronic cerebral hypoperfusion (CCH)-mediated neuronal damage and cognitive impairment. Prostaglandin E1 (PGE1) is known as a vasodilator to protect against ischemic injury in animal models, but its protective role in CCH remains unclear. To determine the effect of PGE1 on cerebral hemodynamics and cognitive functions in CCH, bilateral common carotid artery occlusion (BCCAO) was used to mimic CCH in rats, which were subsequently intravenously injected with PGE1 daily for 2 weeks. Magnetic resonance imaging, immunofluorescence staining and Morris water maze (MWM) were used to evaluate CBF, angiogenesis, and cognitive functions, respectively. We found that PGE1 treatment significantly restored CBF by enhancing vertebral artery dilation. In addition, PGE1 treatment increased the number of microvascular endothelial cells and neuronal cells in the hippocampus, and decreased the numbers of astrocyte and apoptotic cells. In the MWM test, we further showed that the escape latency of CCH rats was significantly reduced after PGE1 treatment. Our results suggest that PGE1 ameliorates cognitive dysfunction in CCH rats by enhancing CBF recovery, sustaining angiogenesis, and reducing astrocyte activation and neuronal loss

    Structure and Evolution of Glycogen Branching Enzyme N-Termini From Bacteria

    Get PDF
    In bacteria, glycogen plays important roles in carbon and energy storage. Its structure has recently been linked with bacterial environmental durability. Among the essential genes for bacterial glycogen metabolism, the glgB-encoded branching enzyme GBE plays an essential role in forming α-1,6-glycosidic branching points, and determines the unique branching patterns in glycogen. Previously, evolutionary analysis of a small sets of GBEs based on their N-terminal domain organization revealed that two types of GBEs might exist: (1) Type 1 GBE with both N1 and N2 (also known as CBM48) domains and (2) Type 2 GBE with only the N2 domain. In this study, we initially analyzed N-terminal domains of 169 manually reviewed bacterial GBEs based on hidden Markov models. A previously unreported group of GBEs (Type 3) with around 100 amino acids ahead of the N1 domains was identified. Phylogenetic analysis found clustered patterns of GBE types in certain bacterial phyla, with the shorter, Type 2 GBEs predominantly found in Gram-positive species, while the longer Type 1 GBEs are found in Gram-negative species. Several in vitro studies have linked N1 domain with transfer of short oligosaccharide chains during glycogen formation, which could lead to small and compact glycogen structures. Compact glycogen degrades more slowly and, as a result, may serve as a durable energy reserve, contributing to the enhanced environmental persistence for bacteria. We were therefore interested in classifying GBEs based on their N-terminal domain via large-scale sequence analysis. In addition, we set to understand the evolutionary patterns of different GBEs through phylogenetic analysis at species and sequence levels. Three-dimensional modeling of GBE N-termini was also performed for structural comparisons. A further study of 9,387 GBE sequences identified 147 GBEs that might belong to a possibly novel group of Type 3 GBE, most of which fall into the phylum of Actinobacteria. We also attempted to correlate glycogen average chain length (ACL) with GBE types. However, no significant conclusions were drawn due to limited data availability. In sum, our study systematically investigated bacterial GBEs in terms of domain organizations from evolutionary point of view, which provides guidance for further experimental study of GBE N-terminal functions in glycogen structure and bacterial physiology

    Monitoring the Process of Endostar-Induced Tumor Vascular Normalization by Non-contrast Intravoxel Incoherent Motion Diffusion-Weighted MRI

    Get PDF
    Tumor vascular normalization has been proposed as a new concept in anti-tumor angiogenesis, and the normalization window is considered as an opportunity to increase the effect of chemoradiotherapy. However, there is still a lack of a non-invasive method for monitoring the process of tumor vascular normalization. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM DW-MRI) is an emerging approach which can effectively assess microperfusion in tumors, without the need for exogenous contrast agents. However, its role in monitoring tumor vascular normalization still needs further study. In this study, we established a tumor vascular normalization model of CT26 colon-carcinoma-bearing mice by means of Endostar treatment. We then employed IVIM DW-MRI and immunofluorescence to detect the process of tumor vascular normalization at different times after treatment. We found that the D* values of the Endostar group were significantly higher than those of the control group on days 4, 6, 8, and 10 after treatment, and the f values of the Endostar group were significantly higher than those of the control group on days 6 and 8. Furthermore, we confirmed through analysis of histologic parameters that Endostar treatment induced the CT26 tumor vascular normalization window starting from day 4 after treatment, and this window lasted for 6 days. Moreover, we found that D* and f values were well correlated with pericyte coverage (r = 0.469 and 0.504, respectively; P < 0.001, both) and relative perfusion (r = 0.424 and 0.457, respectively; P < 0.001, both). Taken together, our findings suggest that IVIM DW-MRI has the potential to serve as a non-invasive approach for monitoring Endostar-induced tumor vascular normalization

    The Analysis on the Singularity of a 2UPS-UPR Parallel Machine Tool

    No full text
    This paper deals with the analysis on the singularity of a 2UPS-UPR parallel machine tool newly designed by Northeastern University. On the basis of establishing kinematics equations, the Jacobian matrix of the parallel machine tool and the shape of the parallel machine tool workspace are obtained, the degree of operability which is the determinant value of the product of Jacobian matrix and its inverse matrix is taken as the performance index of the singularity. With MATLAB software, the change situation about the degree of operability within the workspace is simulated. The analysis results of this paper have laid the theoretical foundation for the position control and processing track planning of the parallel machine tool

    Natural Gas Hydrate CT Image Threshold Segmentation Based on Time Evolution

    No full text
    Micro-scale X-ray computed tomography (CT) has been widely used to study the occurrence forms of gas hydrate-bearing sediments. However, the similarity between the X-ray attenuation coefficient of hydrate and that of water leads to a strong non-uniqueness in their phase differentiation in CT images. To improve threshold segmentation accuracy between hydrate and water in CT images, this study proposes a CT image and histogram normalized method by analyzing the histogram characteristics of CT images at different times during the growth process of natural gas hydrate. First, the peak gray value baseline of methane gas and quartz sand was selected. Then, a Gaussian function was used to fit the curves corresponding to methane gas and quartz sand in the current CT image histogram to obtain the peak gray values. In addition, the peak gray values of methane gas and quartz sand in the current CT image histogram were normalized to the chosen peak gray baseline. Subsequently, the normalized histogram was used to normalize the corresponding CT images. Finally, according to the changing trend of normalized gray histogram curves, the increasing gray ranges of hydrate and decreasing gray ranges of gas-water in CT images were obtained quantitatively, which guided threshold segmentation of CT images. Experimental results show that the proposed threshold segmentation method can provide a basis for phase differentiation between hydrate and water in CT images, improving the threshold segmentation accuracy

    Shuganyin decoction improves the intestinal barrier function in a rat model of irritable bowel syndrome induced by water-avoidance stress

    No full text
    Abstract Background To determine the effect of Shuganyin decoction (SGD) on the intestinal barrier function in an irritable bowel syndrome (IBS) rat model induced by water-avoidance stress. Methods Forty male Wistar rats were divided into control, water-avoidance stress (WAS) group, WAS plus Shuganyin decoction (SGD) group and WAS plus dicetel (Dicetel) group. IBS was induced in rats by subjecting them to water-avoidance stress for 7 days. On day 4 of the WAS protocol, the rats were treated for 7 consecutive days (days 4–11) with SGD, dicetel or a negative control (saline). The number of feces granules, histopathological changes of the intestine and mast cell (MC) morphometry were determined. Intestinal permeability was approximated by measuring the absorption of FITC-dextran 4400 (FD-4) from the lumen into the bloodstream in vivo and in vitro experiments. Also, the expression of protease active receptor-2 (PAR-2) and tumor necrosis factor-α (TNF-α) was estimated using immunohistochemical staining and ELISA, respectively. Tight junction (TJ) protein abundance was measured following a quantitative immunofluorescent analysis of intestinal sections and western blotting. Results In vivo, WAS elicited a significantly increase in the transfer of FD-4 from the intestine to blood about threefold in 30 min compared with control group. After treated with SGD, the intestinal permeability to FD-4 of WAS-induced rats was significantly attenuated (P < 0.05). In vitro, the permeability coefficient (Papp) values were measured for FD-4 absorption across the excised intestine. WAS was shown to increase the intestinal permeability to (4.695 ± 0.3629) × 10−7 cm/s in 120 min, which was 2.6-fold higher than the control group. Rats treated with SGD showed a significant decrease in Papp values of FD-4 as compared to WAS group (P < 0.05). Furthermore, by immunofluorescent detection we found that WAS elicited the irregular distribution of TJ proteins. Using the quantitative analysis software of the medical image, the average optical density and protein abundance of TJ proteins was shown to be lower in the WAS group as compared to control group, (P < 0.05). SGD could attenuate this response and improve TJ distribution (P < 0.05). Western blot analysis confirmed that TJ protein abundance was significantly decreased in WAS group and that they could be returned to control levels following an SGD treatment. WAS also induced an increase in number of MCs, their area and diameter as compared to controls. These observations were attenuated with an SGD or dicetel treatment. Similarly, the expression of PAR-2 and TNF-α exceeded control values in the WAS group and were shown to be successfully attenuated with an SGD treatment. Conclusion WAS-induced IBS rat model exhibited intestinal barrier dysfunction, which was manifested as tight junction damage and structural rearrangements that increased the intestinal permeability. Under these conditions, MCs were activated and degranulated in the intestinal mucosa leading to the activation of PAR-2. Our data showed that SGD could inhibit the activation of MCs and down-regulate the expression of both PAR-2 and TNF-α. In turn, this was shown to improve the expression and structural arrangement of TJ proteins in the intestinal mucosa, thereby regulating the intestinal permeability. It was concluded that Shuganyin could protect the intestinal barrier

    A Lattice-Based Certificateless Traceable Ring Signature Scheme

    No full text
    A ring signature (RS) scheme enables a group member to sign messages on behalf of its group without revealing the definite signer identify, but this also leads to the abuse of anonymity by malicious signers, which can be prevented by traceable ring signatures (TRS). Up until that point, traceable ring signatures have been secure based on the difficult problem of number-theoretic (discrete logarithms or RSA), but since the advent of quantum computers, traditional traceable ring signatures may no longer be secure. Thus Feng proposed a lattice based TRS, which are resistant to attacks by quantum computers. However, that works did not tackle the certificate management problem. To close this gap, a quantum-resistant certificateless TRS scheme was proposed in the study. To the best of our knowledge, this is the first lattice based certificateless TRS. In detail, a specific TRS scheme was combined with the lattice-based certificateless signature technology to solve the certificate management problem while avoid key escrow problem. Additionally, a better zero-knowledge protocol is used to improve the computational efficiency of the scheme, and by reducing the soundness error of the zero-knowledge protocol, the number of runs of the zero-knowledge protocol is reduced, so that the communication overhead of the scheme is reduced. Under random oracle model, the proposed scheme satisfies tag-linkability, anonymity, exculpability and is secure based on the SIS problem and the DLWE problem. In conclusion, the proposed scheme is more practical and promising in e-voting

    Facile Route for Bio-Phenol Siloxane Synthesis via Heterogeneous Catalytic Method and its Autonomic Antibacterial Property

    No full text
    Eugenol, used as bio-phenol, was designed to replace the hydrogen atom of hydrogenterminated siloxane by hydrosilylation reaction under the presence of alumina-supported platinum catalyst (Pt-Al2O3), silica-supported platinum catalyst (Pt-SiO2) and carbon nanotube-supported platinum catalyst (Pt-CNT), respectively. The catalytic activities of these three platinum catalysts were measured by nuclear magnetic resonance hydrogen spectrometer (1H NMR). The properties of bio-phenol siloxane were characterized by Fourier transform infrared spectrometer (FT&ndash;IR), UV-visible spectrophotometer (UV) and thermogravimeter (TGA), and its antibacterial property against Escherichia coli was also studied. The results showed that the catalytic activity of the catalyst Pt-CNT was preferable. When the catalyst concentration was 100 ppm, the reaction temperature was 80 &deg;C and reaction time was 6 h, the reactant conversion rate reached 97%. After modification with bio-phenol, the thermal stability of the obtained bio-phenol siloxane was improved. For bio-phenol siloxane, when the ratio of weight loss reached 98%, the pyrolysis temperature was raised to 663 &deg;C which was 60 &deg;C higher than hydrogenterminated siloxane. Meanwhile, its autonomic antibacterial property against Escherichia coli was improved significantly

    An identity-based traceable ring signatures based on lattice

    No full text
    While ring signatures can provide unconditional anonymity to the signing user, they are vulnerable to malicious signers in certain scenarios, for example, in electronic voting, malicious users will vote multiple times to achieve their own goals, which is not deserved. Traceable ring signatures (TRS) are required to be able to deal with the abuse of anonymity by malicious signers. In addition to ensure the anonymity of honest users, TRS supports to revoke the anonymity of malicious signature users and plays an important role in scenarios such as e-voting, digital currency and anonymous offline coupon service systems. Most current TRS are based on the assumptions of traditional number theory and are insecure under the attacks of quantum computers. So in this paper we propose an identity-based traceable ring signature (IBTRS) based on the standard lattice, which solves the issue of certificate management. Our scheme uses an efficient zero-knowledge proof to replace the Stern protocol, with soundness error reduced to a polynomial fraction, thus improving the efficiency of the signature generation. The security of IBTRS is based on short integer solution(SIS) and learning with error(LWE) assumption in the random oracle model
    • …
    corecore