531 research outputs found

    Experimental Demonstration of Deterministic Chaos in a Waste Oil Biodiesel Semi-Industrial Furnace Combustion System

    Get PDF
    In this paper, the nonlinear dynamic characteristics of the oxygen-enriched combustion of waste oil biodiesel in semi-industrial furnaces were tested by the power spectrum, phase space reconstruction, the largest Lyapunov exponents, and the 0-1 test method. To express the influences of the system parameters, experiments were carried out under different oxygen content conditions (21%, 25%, 28%, 31%, and 33%). Higher oxygen enrichment degrees contribute to finer combustion sufficiency, which produces flames with high luminance. Flame luminance and temperature can be represented by different gray scale values of flame images. The chaotic characteristics of gray scale time series under different oxygen enrichment degrees were studied. With increased oxygen content, the chaotic characteristics of flame gradually developed from weak chaos to strong chaos. Furthermore, the flame maintained a stable combustion process in a high-temperature region. The stronger the chaotic characteristics of the flame, the better the combustion effect. It can be seen that the change of initial combustion conditions has a great influence on the whole combustion process. The results of several chaotic test methods were consistent. Using chaotic characteristics to analyze the waste oil biodiesel combustion process can digitize the combustion process, find the best combustion state, optimize, and precisely control it

    Temporal Knowledge Graph Completion: A Survey

    Full text link
    Knowledge graph completion (KGC) can predict missing links and is crucial for real-world knowledge graphs, which widely suffer from incompleteness. KGC methods assume a knowledge graph is static, but that may lead to inaccurate prediction results because many facts in the knowledge graphs change over time. Recently, emerging methods have shown improved predictive results by further incorporating the timestamps of facts; namely, temporal knowledge graph completion (TKGC). With this temporal information, TKGC methods can learn the dynamic evolution of the knowledge graph that KGC methods fail to capture. In this paper, for the first time, we summarize the recent advances in TKGC research. First, we detail the background of TKGC, including the problem definition, benchmark datasets, and evaluation metrics. Then, we summarize existing TKGC methods based on how timestamps of facts are used to capture the temporal dynamics. Finally, we conclude the paper and present future research directions of TKGC
    corecore